姜黄素负载可溶性大豆多糖/TiO2生物纳米复合材料的制备及其抗菌性能的研究

IF 1.4 Q4 NANOSCIENCE & NANOTECHNOLOGY Nanomedicine Journal Pub Date : 2020-10-01 DOI:10.22038/NMJ.2020.07.00005
D. Salarbashi, M. Tafaghodi, Mojtaba Heydari-Majd
{"title":"姜黄素负载可溶性大豆多糖/TiO2生物纳米复合材料的制备及其抗菌性能的研究","authors":"D. Salarbashi, M. Tafaghodi, Mojtaba Heydari-Majd","doi":"10.22038/NMJ.2020.07.00005","DOIUrl":null,"url":null,"abstract":"Objective(s): Bioactive compounds like curcumin can be incorporated into food packaging formulation either to enhance physico-mechanical properties or to improve the biological activity of the packaging systems. Furthermore, it enables the packaging to monitor the changes in food quality. Materials and Methods: In the present study, the effect of curcumin concentration (0.2, 0.4 and 0.6%) on physico-mechanical and biological activity of soluble soy bean polysaccharide (SSPS)/TiO2 nanoparticles nanocomposites were investigated. Additionally, the release behavior of this bioactive compound from the developed film was tested. Finally, the color changing of SSPS/TiO2 nanoparticles/curcumin nanocomposites in contact with different mediums were examined. Results: When the curcumin concentration increased up to a certain point (0.4 %), the physical and mechanical properties of the film improved, but beyond this point, an opposite effect was observed. SSPS/TiO2 nanocomposite showed strong antibacterial activity against both gram positive and negative bacteria. Small amount of curcumin released in ethanol as a food simulant. Conclusion: The films incorporated by curcumin can be used as promising packaging systems for non-destructively detecting quality and freshness of foods.","PeriodicalId":18933,"journal":{"name":"Nanomedicine Journal","volume":"7 1","pages":"291-298"},"PeriodicalIF":1.4000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Fabrication of curcumin-loaded soluble soy bean polysaccharide/TiO2 bio-nanocomposite for improved antimicrobial activity\",\"authors\":\"D. Salarbashi, M. Tafaghodi, Mojtaba Heydari-Majd\",\"doi\":\"10.22038/NMJ.2020.07.00005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objective(s): Bioactive compounds like curcumin can be incorporated into food packaging formulation either to enhance physico-mechanical properties or to improve the biological activity of the packaging systems. Furthermore, it enables the packaging to monitor the changes in food quality. Materials and Methods: In the present study, the effect of curcumin concentration (0.2, 0.4 and 0.6%) on physico-mechanical and biological activity of soluble soy bean polysaccharide (SSPS)/TiO2 nanoparticles nanocomposites were investigated. Additionally, the release behavior of this bioactive compound from the developed film was tested. Finally, the color changing of SSPS/TiO2 nanoparticles/curcumin nanocomposites in contact with different mediums were examined. Results: When the curcumin concentration increased up to a certain point (0.4 %), the physical and mechanical properties of the film improved, but beyond this point, an opposite effect was observed. SSPS/TiO2 nanocomposite showed strong antibacterial activity against both gram positive and negative bacteria. Small amount of curcumin released in ethanol as a food simulant. Conclusion: The films incorporated by curcumin can be used as promising packaging systems for non-destructively detecting quality and freshness of foods.\",\"PeriodicalId\":18933,\"journal\":{\"name\":\"Nanomedicine Journal\",\"volume\":\"7 1\",\"pages\":\"291-298\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomedicine Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22038/NMJ.2020.07.00005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22038/NMJ.2020.07.00005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 10

摘要

目的:姜黄素等生物活性化合物可以掺入食品包装配方中,以提高包装系统的物理力学性能或提高其生物活性。此外,它使包装能够监测食品质量的变化。材料与方法:研究了姜黄素浓度(0.2%、0.4%和0.6%)对可溶性大豆多糖/TiO2纳米复合材料物理力学和生物活性的影响。此外,测试了这种生物活性化合物从所开发的膜中的释放行为。最后,研究了SSPS/TiO2纳米颗粒/姜黄素纳米复合材料在不同介质中的颜色变化。结果:当姜黄素浓度增加到一定程度(0.4%)时,薄膜的物理和机械性能有所改善,但超过这一点,观察到相反的效果。SSPS/TiO2纳米复合材料对革兰氏阳性菌和阴性菌均表现出较强的抗菌活性。少量姜黄素在乙醇中作为食物模拟物释放。结论:姜黄素薄膜可作为无损检测食品质量和新鲜度的包装体系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fabrication of curcumin-loaded soluble soy bean polysaccharide/TiO2 bio-nanocomposite for improved antimicrobial activity
Objective(s): Bioactive compounds like curcumin can be incorporated into food packaging formulation either to enhance physico-mechanical properties or to improve the biological activity of the packaging systems. Furthermore, it enables the packaging to monitor the changes in food quality. Materials and Methods: In the present study, the effect of curcumin concentration (0.2, 0.4 and 0.6%) on physico-mechanical and biological activity of soluble soy bean polysaccharide (SSPS)/TiO2 nanoparticles nanocomposites were investigated. Additionally, the release behavior of this bioactive compound from the developed film was tested. Finally, the color changing of SSPS/TiO2 nanoparticles/curcumin nanocomposites in contact with different mediums were examined. Results: When the curcumin concentration increased up to a certain point (0.4 %), the physical and mechanical properties of the film improved, but beyond this point, an opposite effect was observed. SSPS/TiO2 nanocomposite showed strong antibacterial activity against both gram positive and negative bacteria. Small amount of curcumin released in ethanol as a food simulant. Conclusion: The films incorporated by curcumin can be used as promising packaging systems for non-destructively detecting quality and freshness of foods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanomedicine Journal
Nanomedicine Journal NANOSCIENCE & NANOTECHNOLOGY-
CiteScore
3.40
自引率
0.00%
发文量
0
审稿时长
12 weeks
期刊最新文献
Nano aptasensors for detection of streptomycin: A review Synthesis of silver nanoparticles by Galega officinalis and its hypoglycemic effects in type 1 diabetic rats Evaluation of mPEG-PLA nanoparticles as vaccine delivery system for modified protective antigen of Bacillus anthracis Synthesis and evaluation of SPION@CMD@Ser-LTVSPWY peptide as a targeted probe for detection of HER2+ cancer cells in MRI Synthesis of L-DOPA conjugated doxorubicin-polyethylenimine nanocarrier and evaluation of its cytotoxicity on A375 and HepG2 cell lines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1