{"title":"石笼溢洪道充氧效率的软计算模型","authors":"Rathod Srinivas, N. K. Tiwari","doi":"10.2166/wqrj.2022.009","DOIUrl":null,"url":null,"abstract":"\n The current paper deals with the performance evaluation of the application of three soft computing algorithms such as adaptive neuro-fuzzy inference system (ANFIS), backpropagation neural network (BPNN), and deep neural network (DNN) in predicting oxygen aeration efficiency (OAE20) of the gabion spillways. Besides, classical equations, namely multivariate linear and nonlinear regressions (MVLR and MVNLR), including previous studies, were also employed in predicting OAE20 of the gabion spillways. The analysis of results showed that the DNN demonstrated relatively lower error values (root mean square error, RMSE = 0.03465; mean square error, MSE = 0.00121; mean absolute error, MAE = 0.02721) and the highest value of correlation coefficient, CC = 0.9757, performed the best in predicting OAE20 of the gabion spillways; however, other applied models, such as ANFIS, BPNN, MVLR, and MVNLR, were giving comparable results evaluated to statistical appraisal metrics of the relative significance of input parameters based on sensitivity investigation, the porosity (n) of gabion materials was observed to be the most critical parameter, and gabion height (P) had the least impact over OAE20 of the spillways.","PeriodicalId":23720,"journal":{"name":"Water Quality Research Journal","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2022-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Oxygen aeration efficiency of gabion spillway by soft computing models\",\"authors\":\"Rathod Srinivas, N. K. Tiwari\",\"doi\":\"10.2166/wqrj.2022.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The current paper deals with the performance evaluation of the application of three soft computing algorithms such as adaptive neuro-fuzzy inference system (ANFIS), backpropagation neural network (BPNN), and deep neural network (DNN) in predicting oxygen aeration efficiency (OAE20) of the gabion spillways. Besides, classical equations, namely multivariate linear and nonlinear regressions (MVLR and MVNLR), including previous studies, were also employed in predicting OAE20 of the gabion spillways. The analysis of results showed that the DNN demonstrated relatively lower error values (root mean square error, RMSE = 0.03465; mean square error, MSE = 0.00121; mean absolute error, MAE = 0.02721) and the highest value of correlation coefficient, CC = 0.9757, performed the best in predicting OAE20 of the gabion spillways; however, other applied models, such as ANFIS, BPNN, MVLR, and MVNLR, were giving comparable results evaluated to statistical appraisal metrics of the relative significance of input parameters based on sensitivity investigation, the porosity (n) of gabion materials was observed to be the most critical parameter, and gabion height (P) had the least impact over OAE20 of the spillways.\",\"PeriodicalId\":23720,\"journal\":{\"name\":\"Water Quality Research Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2022-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Quality Research Journal\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.2166/wqrj.2022.009\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Quality Research Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wqrj.2022.009","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Oxygen aeration efficiency of gabion spillway by soft computing models
The current paper deals with the performance evaluation of the application of three soft computing algorithms such as adaptive neuro-fuzzy inference system (ANFIS), backpropagation neural network (BPNN), and deep neural network (DNN) in predicting oxygen aeration efficiency (OAE20) of the gabion spillways. Besides, classical equations, namely multivariate linear and nonlinear regressions (MVLR and MVNLR), including previous studies, were also employed in predicting OAE20 of the gabion spillways. The analysis of results showed that the DNN demonstrated relatively lower error values (root mean square error, RMSE = 0.03465; mean square error, MSE = 0.00121; mean absolute error, MAE = 0.02721) and the highest value of correlation coefficient, CC = 0.9757, performed the best in predicting OAE20 of the gabion spillways; however, other applied models, such as ANFIS, BPNN, MVLR, and MVNLR, were giving comparable results evaluated to statistical appraisal metrics of the relative significance of input parameters based on sensitivity investigation, the porosity (n) of gabion materials was observed to be the most critical parameter, and gabion height (P) had the least impact over OAE20 of the spillways.