{"title":"最佳级间衬管设计:参数化研究","authors":"A. L. Maldonado, R. Astley","doi":"10.1177/1475472X211036883","DOIUrl":null,"url":null,"abstract":"The current trends for next generation turbofan engines are towards shorter nacelles and increased distances between the fan and the outlet guide vanes. This leads to an overall reduction in lined surface areas as well as an increase in the relative importance of the interstage liner, which is the liner placed between the rotor blades and the stator vanes. So far most of the efforts have been on liners for intakes and bypass ducts. The interstage is different in that the liner is subject to a mean flow with a strong swirl component and shear. The focus of this paper is on the effect of swirling flow on optimal liner attenuation in the interstage region. A broadband source downstream at the Outlet Guide Vanes (OGV) consisting of all propagating modes with equal power in each mode is used. Optimum impedance plots are generated for approach and take-off mean flow conditions. The effect of swirl on liner optimum resistance and reactance and optimum insertion loss is observed for a frequency range characteristic of real turbofan engines.","PeriodicalId":49304,"journal":{"name":"International Journal of Aeroacoustics","volume":"20 1","pages":"610 - 632"},"PeriodicalIF":1.2000,"publicationDate":"2021-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal interstage liner design: A parametric study\",\"authors\":\"A. L. Maldonado, R. Astley\",\"doi\":\"10.1177/1475472X211036883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current trends for next generation turbofan engines are towards shorter nacelles and increased distances between the fan and the outlet guide vanes. This leads to an overall reduction in lined surface areas as well as an increase in the relative importance of the interstage liner, which is the liner placed between the rotor blades and the stator vanes. So far most of the efforts have been on liners for intakes and bypass ducts. The interstage is different in that the liner is subject to a mean flow with a strong swirl component and shear. The focus of this paper is on the effect of swirling flow on optimal liner attenuation in the interstage region. A broadband source downstream at the Outlet Guide Vanes (OGV) consisting of all propagating modes with equal power in each mode is used. Optimum impedance plots are generated for approach and take-off mean flow conditions. The effect of swirl on liner optimum resistance and reactance and optimum insertion loss is observed for a frequency range characteristic of real turbofan engines.\",\"PeriodicalId\":49304,\"journal\":{\"name\":\"International Journal of Aeroacoustics\",\"volume\":\"20 1\",\"pages\":\"610 - 632\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Aeroacoustics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/1475472X211036883\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Aeroacoustics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/1475472X211036883","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
Optimal interstage liner design: A parametric study
The current trends for next generation turbofan engines are towards shorter nacelles and increased distances between the fan and the outlet guide vanes. This leads to an overall reduction in lined surface areas as well as an increase in the relative importance of the interstage liner, which is the liner placed between the rotor blades and the stator vanes. So far most of the efforts have been on liners for intakes and bypass ducts. The interstage is different in that the liner is subject to a mean flow with a strong swirl component and shear. The focus of this paper is on the effect of swirling flow on optimal liner attenuation in the interstage region. A broadband source downstream at the Outlet Guide Vanes (OGV) consisting of all propagating modes with equal power in each mode is used. Optimum impedance plots are generated for approach and take-off mean flow conditions. The effect of swirl on liner optimum resistance and reactance and optimum insertion loss is observed for a frequency range characteristic of real turbofan engines.
期刊介绍:
International Journal of Aeroacoustics is a peer-reviewed journal publishing developments in all areas of fundamental and applied aeroacoustics. Fundamental topics include advances in understanding aeroacoustics phenomena; applied topics include all aspects of civil and military aircraft, automobile and high speed train aeroacoustics, and the impact of acoustics on structures. As well as original contributions, state of the art reviews and surveys will be published.
Subtopics include, among others, jet mixing noise; screech tones; broadband shock associated noise and methods for suppression; the near-ground acoustic environment of Short Take-Off and Vertical Landing (STOVL) aircraft; weapons bay aeroacoustics, cavity acoustics, closed-loop feedback control of aeroacoustic phenomena; computational aeroacoustics including high fidelity numerical simulations, and analytical acoustics.