绿色木霉纤维素酶预处理小麦秸秆的糖化动力学

IF 1.3 4区 农林科学 Q2 MATERIALS SCIENCE, PAPER & WOOD Cellulose Chemistry and Technology Pub Date : 2022-11-29 DOI:10.35812/cellulosechemtechnol.2022.56.90
Milica Galić, M. Stajić, Jasmina Ćilerdžić
{"title":"绿色木霉纤维素酶预处理小麦秸秆的糖化动力学","authors":"Milica Galić, M. Stajić, Jasmina Ćilerdžić","doi":"10.35812/cellulosechemtechnol.2022.56.90","DOIUrl":null,"url":null,"abstract":"The main goal of this study was to analyze the potential of Trichoderma viride BEOFB 1210m for cellulase production during solid-state fermentation of wheat straw pretreated with the ligninosome of a well-known white-rot delignificator – Pleurotus pulmonarius HAI 573. After only 7 days of T. viridae BEOFB 1210m cultivation on biologically pretreated wheat straw, this micromycete produced the most active xylanases, which were also the dominant enzymes, with a value of even 3730.10 U L-1. Likewise, maximal but much lower values of exocellulases (155.83 U L-1) and β-glucosidases (59.98 U L-1) were detected after the same period of fermentation. However, much higher activity of endocellulase (2439.55 U L-1) was obtained on the 10th day. The dynamics of enzyme activity was reflected on the level of substrate depolymerization. As much as 30.56% of the cellulose was degraded already on the 7th day, and that percentage did not change significantly until the end of the cultivation period. A significant loss of hemicelluloses was also measured at the beginning of the fermentation process, but it reached a maximum of approximately 50% by the 21st day. The results clearly showed that the selected T. viride strain has very good potential to synthesize highly active cellulases when grown on a cheap and available substrate, which is significant for further large-scale industrial applications.","PeriodicalId":10130,"journal":{"name":"Cellulose Chemistry and Technology","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DYNAMICS OF PRETREATED WHEAT STRAW SACCHARIFICATION BY CELLULOSOME OF Trichoderma viride\",\"authors\":\"Milica Galić, M. Stajić, Jasmina Ćilerdžić\",\"doi\":\"10.35812/cellulosechemtechnol.2022.56.90\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main goal of this study was to analyze the potential of Trichoderma viride BEOFB 1210m for cellulase production during solid-state fermentation of wheat straw pretreated with the ligninosome of a well-known white-rot delignificator – Pleurotus pulmonarius HAI 573. After only 7 days of T. viridae BEOFB 1210m cultivation on biologically pretreated wheat straw, this micromycete produced the most active xylanases, which were also the dominant enzymes, with a value of even 3730.10 U L-1. Likewise, maximal but much lower values of exocellulases (155.83 U L-1) and β-glucosidases (59.98 U L-1) were detected after the same period of fermentation. However, much higher activity of endocellulase (2439.55 U L-1) was obtained on the 10th day. The dynamics of enzyme activity was reflected on the level of substrate depolymerization. As much as 30.56% of the cellulose was degraded already on the 7th day, and that percentage did not change significantly until the end of the cultivation period. A significant loss of hemicelluloses was also measured at the beginning of the fermentation process, but it reached a maximum of approximately 50% by the 21st day. The results clearly showed that the selected T. viride strain has very good potential to synthesize highly active cellulases when grown on a cheap and available substrate, which is significant for further large-scale industrial applications.\",\"PeriodicalId\":10130,\"journal\":{\"name\":\"Cellulose Chemistry and Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellulose Chemistry and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.35812/cellulosechemtechnol.2022.56.90\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, PAPER & WOOD\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellulose Chemistry and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.35812/cellulosechemtechnol.2022.56.90","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 0

摘要

本研究的主要目的是分析绿色木霉BEOFB 1210m在用著名白腐脱木素菌——肺菇HAI 573的木质素体预处理的麦草固态发酵过程中产生纤维素酶的潜力。在经过生物预处理的小麦秸秆上仅培养7天的T.viridae BEOFB 1210m后,这种微酵母产生了最具活性的木聚糖酶,木聚糖酶也是主要的酶,甚至达到3730.10U L-1。同样,在相同的发酵期后,检测到胞外纤维素酶(155.83 U L-1)和β-葡萄糖苷酶(59.98 U L-1。然而,在第10天获得了更高的内纤维素酶活性(2439.55U L-1)。酶活性的动态反映在底物解聚的水平上。在第7天,多达30.56%的纤维素已经降解,并且直到培养期结束,这一百分比才发生显著变化。在发酵过程开始时也测量到半纤维素的显著损失,但到第21天达到最大约50%。研究结果清楚地表明,所选的绿色T.viride菌株在廉价可用的底物上生长时,具有合成高活性纤维素酶的良好潜力,这对进一步的大规模工业应用具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DYNAMICS OF PRETREATED WHEAT STRAW SACCHARIFICATION BY CELLULOSOME OF Trichoderma viride
The main goal of this study was to analyze the potential of Trichoderma viride BEOFB 1210m for cellulase production during solid-state fermentation of wheat straw pretreated with the ligninosome of a well-known white-rot delignificator – Pleurotus pulmonarius HAI 573. After only 7 days of T. viridae BEOFB 1210m cultivation on biologically pretreated wheat straw, this micromycete produced the most active xylanases, which were also the dominant enzymes, with a value of even 3730.10 U L-1. Likewise, maximal but much lower values of exocellulases (155.83 U L-1) and β-glucosidases (59.98 U L-1) were detected after the same period of fermentation. However, much higher activity of endocellulase (2439.55 U L-1) was obtained on the 10th day. The dynamics of enzyme activity was reflected on the level of substrate depolymerization. As much as 30.56% of the cellulose was degraded already on the 7th day, and that percentage did not change significantly until the end of the cultivation period. A significant loss of hemicelluloses was also measured at the beginning of the fermentation process, but it reached a maximum of approximately 50% by the 21st day. The results clearly showed that the selected T. viride strain has very good potential to synthesize highly active cellulases when grown on a cheap and available substrate, which is significant for further large-scale industrial applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cellulose Chemistry and Technology
Cellulose Chemistry and Technology 工程技术-材料科学:纸与木材
CiteScore
2.30
自引率
23.10%
发文量
81
审稿时长
7.3 months
期刊介绍: Cellulose Chemistry and Technology covers the study and exploitation of the industrial applications of carbohydrate polymers in areas such as food, textiles, paper, wood, adhesives, pharmaceuticals, oil field applications and industrial chemistry. Topics include: • studies of structure and properties • biological and industrial development • analytical methods • chemical and microbiological modifications • interactions with other materials
期刊最新文献
WHITE-ROT FUNGAL PRETREATMENT OF WHEAT STRAW: EFFECT ON ENZYMATIC HYDROLYSIS OF CARBOHYDRATE POLYMERS EXTRACTION, CHARACTERIZATION AND KINETICS OF THERMAL DECOMPOSITION OF LIGNIN FROM DATE SEEDS USING MODEL-FREE AND FITTING APPROACHES EFFECT OF NATURAL DYES AND DIFFERENT MORDANT TREATMENTS ON ULTRA-VIOLET PROTECTION PROPERTY OF COTTON FABRIC A STUDY OF CELLULOSE AND LIGNIN EXTRACTED FROM SĀNCI BARK AND THEIR MODIFICATION EFFECT OF CELLULOSE NANOFIBERS FROM RED COCONUT PEDUNCLE WASTE AS REINFORCEMENT IN EPOXY COMPOSITE SHEETS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1