基于遗传算法和模式搜索方法的靶细胞电离辐射效应模型参数估计

IF 0.3 Q4 MATHEMATICS Matematika Pub Date : 2018-12-31 DOI:10.11113/MATEMATIKA.V34.N3.1134
Hamizah Rashid, Fuaada Mohd Siam, N. Maan, W. N. Rahman
{"title":"基于遗传算法和模式搜索方法的靶细胞电离辐射效应模型参数估计","authors":"Hamizah Rashid, Fuaada Mohd Siam, N. Maan, W. N. Rahman","doi":"10.11113/MATEMATIKA.V34.N3.1134","DOIUrl":null,"url":null,"abstract":"A mechanistic model has been used to explain the effect of radiation. Themodel consists of parameters which represent the biological process following ionizingradiation. The parameters in the model are estimated using local and global optimiza-tion algorithms. The aim of this study is to compare the efficiency between local andglobal optimization method, which is Pattern Search and Genetic Algorithm respectively.Experimental data from the cell survival of irradiated HeLa cell line is used to find theminimum value of the sum of squared error (SSE) between experimental data and sim-ulation data from the model. The performance of both methods are compared based onthe computational time and the value of the objective function, SSE. The optimizationprocess is carried out by using the built-in function in MATLAB software. The parameterestimation results show that genetic algorithm is more superior than pattern search forthis problem.","PeriodicalId":43733,"journal":{"name":"Matematika","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2018-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Parameter Estimation for a Model of Ionizing Radiation Effects on Targeted Cells using Genetic Algorithm and Pattern Search Method\",\"authors\":\"Hamizah Rashid, Fuaada Mohd Siam, N. Maan, W. N. Rahman\",\"doi\":\"10.11113/MATEMATIKA.V34.N3.1134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A mechanistic model has been used to explain the effect of radiation. Themodel consists of parameters which represent the biological process following ionizingradiation. The parameters in the model are estimated using local and global optimiza-tion algorithms. The aim of this study is to compare the efficiency between local andglobal optimization method, which is Pattern Search and Genetic Algorithm respectively.Experimental data from the cell survival of irradiated HeLa cell line is used to find theminimum value of the sum of squared error (SSE) between experimental data and sim-ulation data from the model. The performance of both methods are compared based onthe computational time and the value of the objective function, SSE. The optimizationprocess is carried out by using the built-in function in MATLAB software. The parameterestimation results show that genetic algorithm is more superior than pattern search forthis problem.\",\"PeriodicalId\":43733,\"journal\":{\"name\":\"Matematika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2018-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11113/MATEMATIKA.V34.N3.1134\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11113/MATEMATIKA.V34.N3.1134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

一个机制模型已经被用来解释辐射的影响。该模型由表示电离辐射后的生物过程的参数组成。使用局部和全局优化算法来估计模型中的参数。本研究的目的是比较局部和全局优化方法的效率,分别是模式搜索和遗传算法。使用来自辐照HeLa细胞系的细胞存活的实验数据来找到实验数据与模型模拟数据之间的平方误差和(SSE)的最小值。基于计算时间和目标函数SSE的值,比较了两种方法的性能。优化过程是通过使用MATLAB软件中的内置函数来实现的。参数估计结果表明,对于该问题,遗传算法要优于模式搜索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parameter Estimation for a Model of Ionizing Radiation Effects on Targeted Cells using Genetic Algorithm and Pattern Search Method
A mechanistic model has been used to explain the effect of radiation. Themodel consists of parameters which represent the biological process following ionizingradiation. The parameters in the model are estimated using local and global optimiza-tion algorithms. The aim of this study is to compare the efficiency between local andglobal optimization method, which is Pattern Search and Genetic Algorithm respectively.Experimental data from the cell survival of irradiated HeLa cell line is used to find theminimum value of the sum of squared error (SSE) between experimental data and sim-ulation data from the model. The performance of both methods are compared based onthe computational time and the value of the objective function, SSE. The optimizationprocess is carried out by using the built-in function in MATLAB software. The parameterestimation results show that genetic algorithm is more superior than pattern search forthis problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matematika
Matematika MATHEMATICS-
自引率
25.00%
发文量
0
审稿时长
24 weeks
期刊最新文献
An Almost Unbiased Regression Estimator: Theoretical Comparison and Numerical Comparison in Portland Cement Data Neutrosophic Bicubic Bezier Surface ApproximationModel for Uncertainty Data Using the ARIMA/SARIMA Model for Afghanistan's Drought Forecasting Based on Standardized Precipitation Index Heat Transfer Enhancement of Convective Casson Nanofluid Flow by CNTs over Exponentially Accelerated Plate Biclustering Models Under Collinearity in Simulated Biological Experiments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1