低压氩气间隙气体放电相似性的实验研究

IF 1.2 Q3 PHYSICS, MULTIDISCIPLINARY Papers in Physics Pub Date : 2022-03-08 DOI:10.4279/pip.140004
Prijil Mathew, Sajith T Mathews, Paul Issac, P. Kurian
{"title":"低压氩气间隙气体放电相似性的实验研究","authors":"Prijil Mathew, Sajith T Mathews, Paul Issac, P. Kurian","doi":"10.4279/pip.140004","DOIUrl":null,"url":null,"abstract":"Through experiments and theoretical analysis, we investigated the similarity of gas discharge in low-pressure Argon gaps between two plane-parallel electrodes. We found that the breakdown voltages depended not only on gap length and the product of gas pressureand gap length but also on the aspect ratio of the gap, i.e. Ub = f (pd, d/r). When we considered similar discharge gaps, the radius r, gap length d, and gas pressure p fulfilled the conditions of p1 r1 = p2 r2 and p1d1 = p2 d2. In this situation, the reduced field E/p was also constant. The voltage-current characteristic curves of similar gaps were approximately the same, which is a novel experimental result. Comparison of the discharge physical parameters of the scaled-down gap and prototype gap shows that the proportional relations can be derived from the similarity law. Our experimental results provide some instructions on extrapolating two similar gaps and their discharge properties. Application of the similarity law is straightforward when we scale the discharges up or down if they are too small or large.","PeriodicalId":19791,"journal":{"name":"Papers in Physics","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental study on the similarity of gas discharge in low-pressure Argon gaps\",\"authors\":\"Prijil Mathew, Sajith T Mathews, Paul Issac, P. Kurian\",\"doi\":\"10.4279/pip.140004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Through experiments and theoretical analysis, we investigated the similarity of gas discharge in low-pressure Argon gaps between two plane-parallel electrodes. We found that the breakdown voltages depended not only on gap length and the product of gas pressureand gap length but also on the aspect ratio of the gap, i.e. Ub = f (pd, d/r). When we considered similar discharge gaps, the radius r, gap length d, and gas pressure p fulfilled the conditions of p1 r1 = p2 r2 and p1d1 = p2 d2. In this situation, the reduced field E/p was also constant. The voltage-current characteristic curves of similar gaps were approximately the same, which is a novel experimental result. Comparison of the discharge physical parameters of the scaled-down gap and prototype gap shows that the proportional relations can be derived from the similarity law. Our experimental results provide some instructions on extrapolating two similar gaps and their discharge properties. Application of the similarity law is straightforward when we scale the discharges up or down if they are too small or large.\",\"PeriodicalId\":19791,\"journal\":{\"name\":\"Papers in Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Papers in Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4279/pip.140004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Papers in Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4279/pip.140004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过实验和理论分析,研究了两个平面平行电极间低压氩气隙气体放电的相似性。我们发现击穿电压不仅与间隙长度和气体压力与间隙长度的乘积有关,还与间隙宽高比Ub = f (pd, d/r)有关。当我们考虑相似的放电间隙时,半径r,间隙长度d,气体压力p满足p1 r1 = p2 r2和p1d1 = p2 d2的条件。在这种情况下,简化后的场E/p也是恒定的。相似间隙的电压电流特性曲线基本相同,这是一个新颖的实验结果。将缩小后的间隙与原型间隙的放电物理参数进行比较,可以由相似定律推导出两者的比例关系。我们的实验结果为推断两个相似的间隙及其放电特性提供了一些指导。当我们将排放量放大或缩小(如果它们太小或太大)时,相似性定律的应用是直接的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental study on the similarity of gas discharge in low-pressure Argon gaps
Through experiments and theoretical analysis, we investigated the similarity of gas discharge in low-pressure Argon gaps between two plane-parallel electrodes. We found that the breakdown voltages depended not only on gap length and the product of gas pressureand gap length but also on the aspect ratio of the gap, i.e. Ub = f (pd, d/r). When we considered similar discharge gaps, the radius r, gap length d, and gas pressure p fulfilled the conditions of p1 r1 = p2 r2 and p1d1 = p2 d2. In this situation, the reduced field E/p was also constant. The voltage-current characteristic curves of similar gaps were approximately the same, which is a novel experimental result. Comparison of the discharge physical parameters of the scaled-down gap and prototype gap shows that the proportional relations can be derived from the similarity law. Our experimental results provide some instructions on extrapolating two similar gaps and their discharge properties. Application of the similarity law is straightforward when we scale the discharges up or down if they are too small or large.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Papers in Physics
Papers in Physics PHYSICS, MULTIDISCIPLINARY-
CiteScore
1.90
自引率
0.00%
发文量
13
期刊介绍: Papers in Physics publishes original research in all areas of physics and its interface with other subjects. The scope includes, but is not limited to, physics of particles and fields, condensed matter, relativity and gravitation, nuclear physics, physics of fluids, biophysics, econophysics, chemical physics, statistical mechanics, soft condensed matter, materials science, mathematical physics and general physics. Contributions in the areas of foundations of physics, history of physics and physics education are not considered for publication. Articles published in Papers in Physics contain substantial new results and ideas that advance the state of physics in a non-trivial way. Articles are strictly reviewed by specialists prior to publication. Papers in Physics highlights outstanding articles published in the journal through the Editors'' choice section. Papers in Physics offers two distinct editorial treatments to articles from which authors can choose. In Traditional Review, manuscripts are submitted to anonymous reviewers seeking constructive criticism and editors make a decision on whether publication is appropriate. In Open Review, manuscripts are sent to reviewers. If the paper is considered original and technically sound, the article, the reviewer''s comments and the author''s reply are published alongside the names of all involved. This way, Papers in Physics promotes the open discussion of controversies among specialists that are of help to the reader and to the transparency of the editorial process. Moreover, our reviewers receive their due recognition by publishing a recorded citable report. Papers in Physics publishes Commentaries from the reviewer(s) if major disagreements remain after exchange with the authors or if a different insight proposed is considered valuable for the readers.
期刊最新文献
Detection and classification of rainfall in South America using satellite images and machine learning techniques Electric reduced transition probabilities of \(^{186}\text{W}\) and \(^{186}\text{Os}\) isobars through the interacting boson model-I Insights into vibrational and electronic properties of (6,6)-phenyl-C61-butyric acid methyl ester (PCBM) chemical bonding with (CuO)n clusters: a DFT study Study of hysteresis in the ferromagnetic random field 3-state clock model in two and three dimensional periodic lattices at zero temperature and in the presence of dilution and an absorbing state Changes in the surface irradiance during the total solar eclipse 2020 in Valcheta, Argentina
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1