星形胶质细胞和细胞外基质结构之间的相互作用有助于神经炎症相关的癫痫病理

Frontiers in molecular medicine Pub Date : 2023-06-14 eCollection Date: 2023-01-01 DOI:10.3389/fmmed.2023.1198021
AnnaLin M Woo, Harald Sontheimer
{"title":"星形胶质细胞和细胞外基质结构之间的相互作用有助于神经炎症相关的癫痫病理","authors":"AnnaLin M Woo, Harald Sontheimer","doi":"10.3389/fmmed.2023.1198021","DOIUrl":null,"url":null,"abstract":"<p><p>Often considered the \"housekeeping\" cells of the brain, astrocytes have of late been rising to the forefront of neurodegenerative disorder research. Identified as crucial components of a healthy brain, it is undeniable that when astrocytes are dysfunctional, the entire brain is thrown into disarray. We offer epilepsy as a well-studied neurological disorder in which there is clear evidence of astrocyte contribution to diseases as evidenced across several different disease models, including mouse models of hippocampal sclerosis, trauma associated epilepsy, glioma-associated epilepsy, and beta-1 integrin knockout astrogliosis. In this review we suggest that astrocyte-driven neuroinflammation, which plays a large role in the pathology of epilepsy, is at least partially modulated by interactions with perineuronal nets (PNNs), highly structured formations of the extracellular matrix (ECM). These matrix structures affect synaptic placement, but also intrinsic neuronal properties such as membrane capacitance, as well as ion buffering in their immediate milieu all of which alters neuronal excitability. We propose that the interactions between PNNs and astrocytes contribute to the disease progression of epilepsy vis a vis neuroinflammation. Further investigation and alteration of these interactions to reduce the resultant neuroinflammation may serve as a potential therapeutic target that provides an alternative to the standard anti-seizure medications from which patients are so frequently unable to benefit.</p>","PeriodicalId":73090,"journal":{"name":"Frontiers in molecular medicine","volume":" ","pages":"1198021"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11285605/pdf/","citationCount":"0","resultStr":"{\"title\":\"Interactions between astrocytes and extracellular matrix structures contribute to neuroinflammation-associated epilepsy pathology.\",\"authors\":\"AnnaLin M Woo, Harald Sontheimer\",\"doi\":\"10.3389/fmmed.2023.1198021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Often considered the \\\"housekeeping\\\" cells of the brain, astrocytes have of late been rising to the forefront of neurodegenerative disorder research. Identified as crucial components of a healthy brain, it is undeniable that when astrocytes are dysfunctional, the entire brain is thrown into disarray. We offer epilepsy as a well-studied neurological disorder in which there is clear evidence of astrocyte contribution to diseases as evidenced across several different disease models, including mouse models of hippocampal sclerosis, trauma associated epilepsy, glioma-associated epilepsy, and beta-1 integrin knockout astrogliosis. In this review we suggest that astrocyte-driven neuroinflammation, which plays a large role in the pathology of epilepsy, is at least partially modulated by interactions with perineuronal nets (PNNs), highly structured formations of the extracellular matrix (ECM). These matrix structures affect synaptic placement, but also intrinsic neuronal properties such as membrane capacitance, as well as ion buffering in their immediate milieu all of which alters neuronal excitability. We propose that the interactions between PNNs and astrocytes contribute to the disease progression of epilepsy vis a vis neuroinflammation. Further investigation and alteration of these interactions to reduce the resultant neuroinflammation may serve as a potential therapeutic target that provides an alternative to the standard anti-seizure medications from which patients are so frequently unable to benefit.</p>\",\"PeriodicalId\":73090,\"journal\":{\"name\":\"Frontiers in molecular medicine\",\"volume\":\" \",\"pages\":\"1198021\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11285605/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in molecular medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fmmed.2023.1198021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in molecular medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fmmed.2023.1198021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

星形胶质细胞通常被认为是大脑的“管家”细胞,最近已经上升到神经退行性疾病研究的前沿。作为健康大脑的关键组成部分,不可否认的是,当星形胶质细胞功能失调时,整个大脑就会陷入混乱。我们提供的癫痫是一种研究充分的神经系统疾病,其中有明确证据表明星形胶质细胞对疾病有贡献,这在几种不同的疾病模型中得到了证明,包括海马硬化症、创伤相关癫痫、神经胶质瘤相关癫痫和β-1整合素敲除星形胶质细胞病的小鼠模型。在这篇综述中,我们认为星形胶质细胞驱动的神经炎症在癫痫的病理学中起着重要作用,它至少部分受到与会阴神经网(PNN)的相互作用的调节,会阴神经网是细胞外基质(ECM)的高度结构化形成。这些基质结构影响突触的位置,但也影响神经元的固有特性,如膜电容,以及直接环境中的离子缓冲,所有这些都会改变神经元的兴奋性。我们认为PNN和星形胶质细胞之间的相互作用有助于癫痫相对于神经炎症的疾病进展。进一步研究和改变这些相互作用,以减少由此产生的神经炎症,可能成为一个潜在的治疗靶点,为患者经常无法受益的标准抗癫痫药物提供替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Interactions between astrocytes and extracellular matrix structures contribute to neuroinflammation-associated epilepsy pathology.

Often considered the "housekeeping" cells of the brain, astrocytes have of late been rising to the forefront of neurodegenerative disorder research. Identified as crucial components of a healthy brain, it is undeniable that when astrocytes are dysfunctional, the entire brain is thrown into disarray. We offer epilepsy as a well-studied neurological disorder in which there is clear evidence of astrocyte contribution to diseases as evidenced across several different disease models, including mouse models of hippocampal sclerosis, trauma associated epilepsy, glioma-associated epilepsy, and beta-1 integrin knockout astrogliosis. In this review we suggest that astrocyte-driven neuroinflammation, which plays a large role in the pathology of epilepsy, is at least partially modulated by interactions with perineuronal nets (PNNs), highly structured formations of the extracellular matrix (ECM). These matrix structures affect synaptic placement, but also intrinsic neuronal properties such as membrane capacitance, as well as ion buffering in their immediate milieu all of which alters neuronal excitability. We propose that the interactions between PNNs and astrocytes contribute to the disease progression of epilepsy vis a vis neuroinflammation. Further investigation and alteration of these interactions to reduce the resultant neuroinflammation may serve as a potential therapeutic target that provides an alternative to the standard anti-seizure medications from which patients are so frequently unable to benefit.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editorial: Gene therapy and genome editing for metabolic liver disorders. An artificial transcription factor that activates potent interferon-γ expression in human Jurkat T Cells. Immune-checkpoint-inhibitor therapy directed against PD-L1 is tolerated in the heart without manifestation of cardiac inflammation in a preclinical reversible melanoma mouse model. Human-specific gene ARHGAP11B-potentially an additional tool in the treatment of neurodegenerative diseases? DeltaRex-G, tumor targeted retrovector encoding a CCNG1 inhibitor, for CAR-T cell therapy induced cytokine release syndrome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1