自升式钻井平台的网络顶升与能耗控制:仿真与实验

IF 2 3区 工程技术 Q2 ENGINEERING, MARINE Polish Maritime Research Pub Date : 2022-09-01 DOI:10.2478/pomr-2022-0029
V. Do, X. Dang, Tien-Dat Tran, Thi-Duyen-Anh Pham
{"title":"自升式钻井平台的网络顶升与能耗控制:仿真与实验","authors":"V. Do, X. Dang, Tien-Dat Tran, Thi-Duyen-Anh Pham","doi":"10.2478/pomr-2022-0029","DOIUrl":null,"url":null,"abstract":"Abstract Oil and gas projects differ from regular investment projects in that they are frequently large-scale, categorised as vital national projects, highly technological, and associated with significant risks. Drilling rigs are a crucial component of the oil and gas sector and the majority of the systems and equipment aboard drilling rigs are operated automatically. Consequently, it is crucial to address the topic of an advanced control theory for off-shore systems. Network technology connected to control is progressively being used to replace outdated technologies, together with other contemporary technologies. In this study, we examine how to adapt a networked control jacking system to the effects of internal and external disturbances with a time delay, using a Fuzzy controller (FC)-based particle swarm optimisation. To demonstrate the benefit of the proposed approach, the developed Fuzzy Particle Swarm Optimisation (FPSO) controller is compared with the fuzzy controller. Finally, the results from simulations and experiments utilising Matlab software and embedded systems demonstrate the suitability of the proposed approach.","PeriodicalId":49681,"journal":{"name":"Polish Maritime Research","volume":"29 1","pages":"89 - 98"},"PeriodicalIF":2.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Jacking and Energy Consumption Control Over Network for Jack-Up Rig: Simulation and Experiment\",\"authors\":\"V. Do, X. Dang, Tien-Dat Tran, Thi-Duyen-Anh Pham\",\"doi\":\"10.2478/pomr-2022-0029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Oil and gas projects differ from regular investment projects in that they are frequently large-scale, categorised as vital national projects, highly technological, and associated with significant risks. Drilling rigs are a crucial component of the oil and gas sector and the majority of the systems and equipment aboard drilling rigs are operated automatically. Consequently, it is crucial to address the topic of an advanced control theory for off-shore systems. Network technology connected to control is progressively being used to replace outdated technologies, together with other contemporary technologies. In this study, we examine how to adapt a networked control jacking system to the effects of internal and external disturbances with a time delay, using a Fuzzy controller (FC)-based particle swarm optimisation. To demonstrate the benefit of the proposed approach, the developed Fuzzy Particle Swarm Optimisation (FPSO) controller is compared with the fuzzy controller. Finally, the results from simulations and experiments utilising Matlab software and embedded systems demonstrate the suitability of the proposed approach.\",\"PeriodicalId\":49681,\"journal\":{\"name\":\"Polish Maritime Research\",\"volume\":\"29 1\",\"pages\":\"89 - 98\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polish Maritime Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2478/pomr-2022-0029\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polish Maritime Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2478/pomr-2022-0029","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0

摘要

油气项目与常规投资项目的不同之处在于,油气项目往往规模较大,被归类为国家重大项目,技术含量高,风险大。钻机是油气行业的重要组成部分,钻机上的大多数系统和设备都是自动操作的。因此,解决海上系统的先进控制理论是至关重要的。与控制有关的网络技术与其他当代技术一起逐渐被用来取代过时的技术。在本研究中,我们研究了如何使用基于模糊控制器(FC)的粒子群优化,使网络控制千斤顶系统适应具有时间延迟的内部和外部干扰的影响。为了证明该方法的有效性,将所开发的模糊粒子群优化(FPSO)控制器与模糊控制器进行了比较。最后,利用Matlab软件和嵌入式系统进行仿真和实验,验证了所提方法的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Jacking and Energy Consumption Control Over Network for Jack-Up Rig: Simulation and Experiment
Abstract Oil and gas projects differ from regular investment projects in that they are frequently large-scale, categorised as vital national projects, highly technological, and associated with significant risks. Drilling rigs are a crucial component of the oil and gas sector and the majority of the systems and equipment aboard drilling rigs are operated automatically. Consequently, it is crucial to address the topic of an advanced control theory for off-shore systems. Network technology connected to control is progressively being used to replace outdated technologies, together with other contemporary technologies. In this study, we examine how to adapt a networked control jacking system to the effects of internal and external disturbances with a time delay, using a Fuzzy controller (FC)-based particle swarm optimisation. To demonstrate the benefit of the proposed approach, the developed Fuzzy Particle Swarm Optimisation (FPSO) controller is compared with the fuzzy controller. Finally, the results from simulations and experiments utilising Matlab software and embedded systems demonstrate the suitability of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polish Maritime Research
Polish Maritime Research 工程技术-工程:海洋
CiteScore
3.70
自引率
45.00%
发文量
20
审稿时长
>12 weeks
期刊介绍: The scope of the journal covers selected issues related to all phases of product lifecycle and corresponding technologies for offshore floating and fixed structures and their components. All researchers are invited to submit their original papers for peer review and publications related to methods of the design; production and manufacturing; maintenance and operational processes of such technical items as: all types of vessels and their equipment, fixed and floating offshore units and their components, autonomous underwater vehicle (AUV) and remotely operated vehicle (ROV). We welcome submissions from these fields in the following technical topics: ship hydrodynamics: buoyancy and stability; ship resistance and propulsion, etc., structural integrity of ship and offshore unit structures: materials; welding; fatigue and fracture, etc., marine equipment: ship and offshore unit power plants: overboarding equipment; etc.
期刊最新文献
Exploration of a Model Thermoacoustic Turbogenerator with a Bidirectional Turbine Computer-Aided System for Layout of Fire Hydrants on Boards Designed Vessel Using the Particle Swarm Optimization Algorithm Optimal UV Quantity for a Ballast Water Treatment System for Compliance with Imo Standards Human Resource Management Digitalisation in Multidisciplinary Ship Design Companies Effects of Sway and Roll Excitations on Sloshing Loads in a KC-1 Membrane LNG Tank
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1