基于三元分级结构的太阳能蒸发器用于长期浓盐水处理

IF 10.7 Q1 CHEMISTRY, PHYSICAL EcoMat Pub Date : 2023-05-01 DOI:10.1002/eom2.12355
Wen He, Lei Zhou, Yilan Wang, Lejian Yu, Yaqi Hou, Shaoyang Bi, Miao Wang, Xu Hou
{"title":"基于三元分级结构的太阳能蒸发器用于长期浓盐水处理","authors":"Wen He,&nbsp;Lei Zhou,&nbsp;Yilan Wang,&nbsp;Lejian Yu,&nbsp;Yaqi Hou,&nbsp;Shaoyang Bi,&nbsp;Miao Wang,&nbsp;Xu Hou","doi":"10.1002/eom2.12355","DOIUrl":null,"url":null,"abstract":"<p>Solar-driven evaporation has been a promising desalination method for treating concentrated seawater, since it is cost-effectiveness, simplicity, and environmentally friendly. However, this method faces an unavoidable long-term problem that the salt generated in the evaporation processes would affect and hinder its evaporation efficiency. Because the salt inevitably crystallizes on the surface of photothermal evaporation materials, and this crystallization process increases with time to impair the material area of the sunlight absorption and evaporation. Here, we show a ternary hierarchical structure based solar-driven evaporator that reduces the evaporation material surface coverage of the salt to get long-lasting concentrated brine treatment capacity. This evaporator is constructed by plugging vertically arranged hollow tube arrays across a porous plate. The top, middle, and bottom of the evaporator respectively serve as the salt crystallization site, the evaporation site, and the light absorption site. Meanwhile, the self-cleaning of the evaporator can be achieved by back diffusion of the crystallized salts. As a result, this efficient and durable evaporator exhibits freshwater production of 10.21 kg/(m<sup>2</sup>·day) in outdoor experiment in the treatment of the concentrated natural seawater (21.3 wt%).</p><p>\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"5 8","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12355","citationCount":"2","resultStr":"{\"title\":\"Ternary hierarchical structure based solar-driven evaporator for long-lasting concentrated brine treatment\",\"authors\":\"Wen He,&nbsp;Lei Zhou,&nbsp;Yilan Wang,&nbsp;Lejian Yu,&nbsp;Yaqi Hou,&nbsp;Shaoyang Bi,&nbsp;Miao Wang,&nbsp;Xu Hou\",\"doi\":\"10.1002/eom2.12355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Solar-driven evaporation has been a promising desalination method for treating concentrated seawater, since it is cost-effectiveness, simplicity, and environmentally friendly. However, this method faces an unavoidable long-term problem that the salt generated in the evaporation processes would affect and hinder its evaporation efficiency. Because the salt inevitably crystallizes on the surface of photothermal evaporation materials, and this crystallization process increases with time to impair the material area of the sunlight absorption and evaporation. Here, we show a ternary hierarchical structure based solar-driven evaporator that reduces the evaporation material surface coverage of the salt to get long-lasting concentrated brine treatment capacity. This evaporator is constructed by plugging vertically arranged hollow tube arrays across a porous plate. The top, middle, and bottom of the evaporator respectively serve as the salt crystallization site, the evaporation site, and the light absorption site. Meanwhile, the self-cleaning of the evaporator can be achieved by back diffusion of the crystallized salts. As a result, this efficient and durable evaporator exhibits freshwater production of 10.21 kg/(m<sup>2</sup>·day) in outdoor experiment in the treatment of the concentrated natural seawater (21.3 wt%).</p><p>\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":93174,\"journal\":{\"name\":\"EcoMat\",\"volume\":\"5 8\",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12355\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EcoMat\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eom2.12355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EcoMat","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eom2.12355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 2

摘要

太阳能驱动的蒸发已经成为一种很有前途的海水淡化方法,用于处理浓缩海水,因为它具有成本效益、简单性和环保性。然而,这种方法面临着一个不可避免的长期问题,即蒸发过程中产生的盐会影响和阻碍其蒸发效率。因为盐不可避免地在光热蒸发材料表面结晶,并且这种结晶过程随着时间的推移而增加,损害了材料对太阳光的吸收和蒸发。在这里,我们展示了一个基于三元层次结构的太阳能驱动蒸发器,它减少了盐的蒸发材料表面覆盖,以获得持久的浓盐水处理能力。这种蒸发器是通过在多孔板上插入垂直排列的空心管阵列而构成的。蒸发器的顶部、中部和底部分别作为盐结晶部位、蒸发部位和光吸收部位。同时,通过结晶盐的反扩散实现蒸发器的自清洁。因此,在室外实验中,这种高效耐用的蒸发器在处理浓天然海水(21.3 wt%)时显示出10.21 kg/(m2·天)的淡水产量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ternary hierarchical structure based solar-driven evaporator for long-lasting concentrated brine treatment

Solar-driven evaporation has been a promising desalination method for treating concentrated seawater, since it is cost-effectiveness, simplicity, and environmentally friendly. However, this method faces an unavoidable long-term problem that the salt generated in the evaporation processes would affect and hinder its evaporation efficiency. Because the salt inevitably crystallizes on the surface of photothermal evaporation materials, and this crystallization process increases with time to impair the material area of the sunlight absorption and evaporation. Here, we show a ternary hierarchical structure based solar-driven evaporator that reduces the evaporation material surface coverage of the salt to get long-lasting concentrated brine treatment capacity. This evaporator is constructed by plugging vertically arranged hollow tube arrays across a porous plate. The top, middle, and bottom of the evaporator respectively serve as the salt crystallization site, the evaporation site, and the light absorption site. Meanwhile, the self-cleaning of the evaporator can be achieved by back diffusion of the crystallized salts. As a result, this efficient and durable evaporator exhibits freshwater production of 10.21 kg/(m2·day) in outdoor experiment in the treatment of the concentrated natural seawater (21.3 wt%).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
期刊最新文献
Cover Image Issue Information PTAA-infiltrated thin-walled carbon nanotube electrode with hidden encapsulation for perovskite solar cells Halogen-free solvent processed organic solar sub-modules (≈55 cm2) with 14.70% efficiency by controlling the morphology of alkyl chain engineered polymer donor Minimizing voltage losses in Sn perovskite solar cells by Cs2SnI6 passivation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1