古尔班塔 nggg沙漠不同短命荒漠植物根际生物群的异同

IF 5.9 3区 环境科学与生态学 Q1 Environmental Science Environmental Sciences Europe Pub Date : 2023-03-10 DOI:10.1186/s12302-023-00724-5
Yang Yang, Weiguo Liu, Tingwen Huang, Yaru Yang
{"title":"古尔班塔<s:1> nggg<e:1>沙漠不同短命荒漠植物根际生物群的异同","authors":"Yang Yang,&nbsp;Weiguo Liu,&nbsp;Tingwen Huang,&nbsp;Yaru Yang","doi":"10.1186/s12302-023-00724-5","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>The interactions between rhizosphere microbial community and ephemeral desert plants strongly affect the ecological protection, restoration and reconstruction in deserts. Ephemeral desert plants as the pioneer plants in the succession are widely distributed in deserts. However, how the ephemeral desert plants assemble their rhizosphere microbiota to adapt to arid and semi-arid environments has been little explored. Here, we used high-throughput sequencing techniques to compare rhizosphere bacterial communities and functions with different ephemeral desert plants composition from Gurbantünggüt Desert in western China.</p><h3>Results</h3><p>These plants had the same dominant bacterial phyla, which approximately counted 98% of the total bacterial communities. But the bacterial communities had significant differences (<i>P</i> &lt; 0.05) in the composition, structure, diversity and functions of all groups. When comparing every two groups, similarities appeared in the composition, structure and functions of rhizosphere microbiota, and within each group, it is more likely that the rhizosphere bacterial communities of closely related ephemeral desert plants tend to be consistent. Additionally, the rhizosphere bacterial taxa had more similarities in predicted functions. And the predicted functions were correlated with the dominant bacterial phyla.</p><h3>Conclusions</h3><p>Overall, to adapt to the arid and semi-arid environments, the rhizosphere bacterial communities of ephemeral desert plants appear similarities based on having differences. This finding will help to understand the importance of how plants and soil microorganisms cooperate in the process of adaption to arid and semi-arid environments.</p></div>","PeriodicalId":54293,"journal":{"name":"Environmental Sciences Europe","volume":"35 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://enveurope.springeropen.com/counter/pdf/10.1186/s12302-023-00724-5","citationCount":"3","resultStr":"{\"title\":\"Similarities and differences in the rhizosphere biota among different ephemeral desert plants in Gurbantünggüt Desert\",\"authors\":\"Yang Yang,&nbsp;Weiguo Liu,&nbsp;Tingwen Huang,&nbsp;Yaru Yang\",\"doi\":\"10.1186/s12302-023-00724-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>The interactions between rhizosphere microbial community and ephemeral desert plants strongly affect the ecological protection, restoration and reconstruction in deserts. Ephemeral desert plants as the pioneer plants in the succession are widely distributed in deserts. However, how the ephemeral desert plants assemble their rhizosphere microbiota to adapt to arid and semi-arid environments has been little explored. Here, we used high-throughput sequencing techniques to compare rhizosphere bacterial communities and functions with different ephemeral desert plants composition from Gurbantünggüt Desert in western China.</p><h3>Results</h3><p>These plants had the same dominant bacterial phyla, which approximately counted 98% of the total bacterial communities. But the bacterial communities had significant differences (<i>P</i> &lt; 0.05) in the composition, structure, diversity and functions of all groups. When comparing every two groups, similarities appeared in the composition, structure and functions of rhizosphere microbiota, and within each group, it is more likely that the rhizosphere bacterial communities of closely related ephemeral desert plants tend to be consistent. Additionally, the rhizosphere bacterial taxa had more similarities in predicted functions. And the predicted functions were correlated with the dominant bacterial phyla.</p><h3>Conclusions</h3><p>Overall, to adapt to the arid and semi-arid environments, the rhizosphere bacterial communities of ephemeral desert plants appear similarities based on having differences. This finding will help to understand the importance of how plants and soil microorganisms cooperate in the process of adaption to arid and semi-arid environments.</p></div>\",\"PeriodicalId\":54293,\"journal\":{\"name\":\"Environmental Sciences Europe\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2023-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://enveurope.springeropen.com/counter/pdf/10.1186/s12302-023-00724-5\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Sciences Europe\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s12302-023-00724-5\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Sciences Europe","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1186/s12302-023-00724-5","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 3

摘要

荒漠植物与根际微生物群落的相互作用对荒漠生态保护、恢复和重建具有重要影响。短命沙漠植物作为演替中的先锋植物,在沙漠中广泛分布。然而,短命的沙漠植物如何聚集其根际微生物群以适应干旱和半干旱环境的研究很少。本研究采用高通量测序技术对中国西部古尔班塔 ngg沙漠不同荒漠植物组成的根际细菌群落及其功能进行了比较。结果这些植物具有相同的优势菌门,约占细菌群落总数的98%。但各类群细菌群落在组成、结构、多样性和功能上均存在显著差异(P < 0.05)。在每两组比较时,根际微生物群的组成、结构和功能都有相似之处,在每一组内,近亲短命荒漠植物的根际细菌群落更有可能趋于一致。此外,根际细菌分类群在预测功能上具有更多的相似性。预测功能与优势菌门相关。结论总体而言,为适应干旱和半干旱环境,荒漠植物的根际细菌群落在存在差异的基础上呈现相似性。这一发现将有助于理解植物和土壤微生物在适应干旱和半干旱环境过程中如何合作的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Similarities and differences in the rhizosphere biota among different ephemeral desert plants in Gurbantünggüt Desert

Background

The interactions between rhizosphere microbial community and ephemeral desert plants strongly affect the ecological protection, restoration and reconstruction in deserts. Ephemeral desert plants as the pioneer plants in the succession are widely distributed in deserts. However, how the ephemeral desert plants assemble their rhizosphere microbiota to adapt to arid and semi-arid environments has been little explored. Here, we used high-throughput sequencing techniques to compare rhizosphere bacterial communities and functions with different ephemeral desert plants composition from Gurbantünggüt Desert in western China.

Results

These plants had the same dominant bacterial phyla, which approximately counted 98% of the total bacterial communities. But the bacterial communities had significant differences (P < 0.05) in the composition, structure, diversity and functions of all groups. When comparing every two groups, similarities appeared in the composition, structure and functions of rhizosphere microbiota, and within each group, it is more likely that the rhizosphere bacterial communities of closely related ephemeral desert plants tend to be consistent. Additionally, the rhizosphere bacterial taxa had more similarities in predicted functions. And the predicted functions were correlated with the dominant bacterial phyla.

Conclusions

Overall, to adapt to the arid and semi-arid environments, the rhizosphere bacterial communities of ephemeral desert plants appear similarities based on having differences. This finding will help to understand the importance of how plants and soil microorganisms cooperate in the process of adaption to arid and semi-arid environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Sciences Europe
Environmental Sciences Europe Environmental Science-Pollution
CiteScore
9.20
自引率
1.70%
发文量
110
审稿时长
13 weeks
期刊介绍: ESEU is an international journal, focusing primarily on Europe, with a broad scope covering all aspects of environmental sciences, including the main topic regulation. ESEU will discuss the entanglement between environmental sciences and regulation because, in recent years, there have been misunderstandings and even disagreement between stakeholders in these two areas. ESEU will help to improve the comprehension of issues between environmental sciences and regulation. ESEU will be an outlet from the German-speaking (DACH) countries to Europe and an inlet from Europe to the DACH countries regarding environmental sciences and regulation. Moreover, ESEU will facilitate the exchange of ideas and interaction between Europe and the DACH countries regarding environmental regulatory issues. Although Europe is at the center of ESEU, the journal will not exclude the rest of the world, because regulatory issues pertaining to environmental sciences can be fully seen only from a global perspective.
期刊最新文献
Towards the global plastic treaty: a clue to the complexity of plastics in practice Chronic toxicity testing including transcriptomics-based molecular profiling in Cloeon dipterum Environmental impact of quarrying on air quality in Ebonyi state, Nigeria How does high-speed railway affect green technology innovation? A perspective of high-quality human capital Management of links of interest in European Union expertise authorities dealing with plant protection products: comparative analysis and recommendations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1