{"title":"揭示和克服数据驱动的自然语言理解弱点的方法综述","authors":"Viktor Schlegel, G. Nenadic, R. Batista-Navarro","doi":"10.1017/s1351324922000171","DOIUrl":null,"url":null,"abstract":"Abstract Recent years have seen a growing number of publications that analyse Natural Language Understanding (NLU) datasets for superficial cues, whether they undermine the complexity of the tasks underlying those datasets and how they impact those models that are optimised and evaluated on this data. This structured survey provides an overview of the evolving research area by categorising reported weaknesses in models and datasets and the methods proposed to reveal and alleviate those weaknesses for the English language. We summarise and discuss the findings and conclude with a set of recommendations for possible future research directions. We hope that it will be a useful resource for researchers who propose new datasets to assess the suitability and quality of their data to evaluate various phenomena of interest, as well as those who propose novel NLU approaches, to further understand the implications of their improvements with respect to their model’s acquired capabilities.","PeriodicalId":49143,"journal":{"name":"Natural Language Engineering","volume":"29 1","pages":"1 - 31"},"PeriodicalIF":2.3000,"publicationDate":"2022-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A survey of methods for revealing and overcoming weaknesses of data-driven Natural Language Understanding\",\"authors\":\"Viktor Schlegel, G. Nenadic, R. Batista-Navarro\",\"doi\":\"10.1017/s1351324922000171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Recent years have seen a growing number of publications that analyse Natural Language Understanding (NLU) datasets for superficial cues, whether they undermine the complexity of the tasks underlying those datasets and how they impact those models that are optimised and evaluated on this data. This structured survey provides an overview of the evolving research area by categorising reported weaknesses in models and datasets and the methods proposed to reveal and alleviate those weaknesses for the English language. We summarise and discuss the findings and conclude with a set of recommendations for possible future research directions. We hope that it will be a useful resource for researchers who propose new datasets to assess the suitability and quality of their data to evaluate various phenomena of interest, as well as those who propose novel NLU approaches, to further understand the implications of their improvements with respect to their model’s acquired capabilities.\",\"PeriodicalId\":49143,\"journal\":{\"name\":\"Natural Language Engineering\",\"volume\":\"29 1\",\"pages\":\"1 - 31\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Language Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1017/s1351324922000171\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Language Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s1351324922000171","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A survey of methods for revealing and overcoming weaknesses of data-driven Natural Language Understanding
Abstract Recent years have seen a growing number of publications that analyse Natural Language Understanding (NLU) datasets for superficial cues, whether they undermine the complexity of the tasks underlying those datasets and how they impact those models that are optimised and evaluated on this data. This structured survey provides an overview of the evolving research area by categorising reported weaknesses in models and datasets and the methods proposed to reveal and alleviate those weaknesses for the English language. We summarise and discuss the findings and conclude with a set of recommendations for possible future research directions. We hope that it will be a useful resource for researchers who propose new datasets to assess the suitability and quality of their data to evaluate various phenomena of interest, as well as those who propose novel NLU approaches, to further understand the implications of their improvements with respect to their model’s acquired capabilities.
期刊介绍:
Natural Language Engineering meets the needs of professionals and researchers working in all areas of computerised language processing, whether from the perspective of theoretical or descriptive linguistics, lexicology, computer science or engineering. Its aim is to bridge the gap between traditional computational linguistics research and the implementation of practical applications with potential real-world use. As well as publishing research articles on a broad range of topics - from text analysis, machine translation, information retrieval and speech analysis and generation to integrated systems and multi modal interfaces - it also publishes special issues on specific areas and technologies within these topics, an industry watch column and book reviews.