{"title":"基于注意力特征融合的双模板Siamese网络目标跟踪","authors":"Mengxing Liu, J. Shi, Y. Wang","doi":"10.13164/re.2023.0371","DOIUrl":null,"url":null,"abstract":". In order to alleviate the adverse effects resulted from complex scenes for object tracking, such as fast movement, mottled background, interference of similar objects, and occlusion etc., an algorithm using dual-template Siamese network with attention feature fusion, named SiamDT, is proposed in this paper. The main idea include that the original ResNet-50 network is improved to extract deep semantic information and shallow spatial information, which are effectively fused using the attention mechanism to achieve accurate feature representation of objects. In addition, a template branch is added to the traditional Siamese network in which a dynamic template is generated together with the first frame image to solve the problems of template failure and model drift. Experimental results on OTB100 dataset and VOT2018 dataset show that the proposed approach obtains the excellent performance compared with the state-of-the-art tracking algorithms, which verifies the feasibility and effectiveness of the proposed approach.","PeriodicalId":54514,"journal":{"name":"Radioengineering","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual-Template Siamese Network with Attention Feature Fusion for Object Tracking\",\"authors\":\"Mengxing Liu, J. Shi, Y. Wang\",\"doi\":\"10.13164/re.2023.0371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In order to alleviate the adverse effects resulted from complex scenes for object tracking, such as fast movement, mottled background, interference of similar objects, and occlusion etc., an algorithm using dual-template Siamese network with attention feature fusion, named SiamDT, is proposed in this paper. The main idea include that the original ResNet-50 network is improved to extract deep semantic information and shallow spatial information, which are effectively fused using the attention mechanism to achieve accurate feature representation of objects. In addition, a template branch is added to the traditional Siamese network in which a dynamic template is generated together with the first frame image to solve the problems of template failure and model drift. Experimental results on OTB100 dataset and VOT2018 dataset show that the proposed approach obtains the excellent performance compared with the state-of-the-art tracking algorithms, which verifies the feasibility and effectiveness of the proposed approach.\",\"PeriodicalId\":54514,\"journal\":{\"name\":\"Radioengineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.13164/re.2023.0371\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.13164/re.2023.0371","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Dual-Template Siamese Network with Attention Feature Fusion for Object Tracking
. In order to alleviate the adverse effects resulted from complex scenes for object tracking, such as fast movement, mottled background, interference of similar objects, and occlusion etc., an algorithm using dual-template Siamese network with attention feature fusion, named SiamDT, is proposed in this paper. The main idea include that the original ResNet-50 network is improved to extract deep semantic information and shallow spatial information, which are effectively fused using the attention mechanism to achieve accurate feature representation of objects. In addition, a template branch is added to the traditional Siamese network in which a dynamic template is generated together with the first frame image to solve the problems of template failure and model drift. Experimental results on OTB100 dataset and VOT2018 dataset show that the proposed approach obtains the excellent performance compared with the state-of-the-art tracking algorithms, which verifies the feasibility and effectiveness of the proposed approach.
期刊介绍:
Since 1992, the Radioengineering Journal has been publishing original scientific and engineering papers from the area of wireless communication and application of wireless technologies. The submitted papers are expected to deal with electromagnetics (antennas, propagation, microwaves), signals, circuits, optics and related fields.
Each issue of the Radioengineering Journal is started by a feature article. Feature articles are organized by members of the Editorial Board to present the latest development in the selected areas of radio engineering.
The Radioengineering Journal makes a maximum effort to publish submitted papers as quickly as possible. The first round of reviews should be completed within two months. Then, authors are expected to improve their manuscript within one month. If substantial changes are recommended and further reviews are requested by the reviewers, the publication time is prolonged.