原始群居杂交马蜂幼蜂激素联合控制下的繁殖和生育信号

IF 1.6 3区 环境科学与生态学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Chemoecology Pub Date : 2022-04-11 DOI:10.1007/s00049-022-00370-y
Helena Mendes Ferreira, Rafael Carvalho da Silva, Fabio Santos do Nascimento, Tom Wenseleers, Cintia Akemi Oi
{"title":"原始群居杂交马蜂幼蜂激素联合控制下的繁殖和生育信号","authors":"Helena Mendes Ferreira,&nbsp;Rafael Carvalho da Silva,&nbsp;Fabio Santos do Nascimento,&nbsp;Tom Wenseleers,&nbsp;Cintia Akemi Oi","doi":"10.1007/s00049-022-00370-y","DOIUrl":null,"url":null,"abstract":"<div><p>Juvenile hormone (JH) is a key insect hormone involved in the regulation of physiological, developmental and behavioural processes. In social insects, it has been shown that JH can play a key role in modulating reproductive division of labour, age-related division of labour and chemical signalling, and can display marked changes in function of the degree of sociality. Here, we checked the effects of JH on reproduction in single foundresses of two neotropical primitively eusocial wasp species, <i>Mischocyttarus cerberus</i> and <i>Mischocyttarus cassununga</i>, by examining how treatments with the JH-analogue methoprene and the anti-JH precocene affect egg-laying, ovarian activation and chemical profiles. Our hypothesis was that reproduction and the production of particular fertility-linked cuticular hydrocarbon cues might be under shared JH control already in primitively eusocial wasp species, and this could have been a key enabler to allow such cues to later evolve into full-fledged queen pheromone signals in advanced eusocial species. In line with this hypothesis, we show that our hormone treatments significantly affected both egg laying and the production of particular hydrocarbons present on the egg surface. We discuss the relevance of these findings in the context of the evolution of social insect queen pheromones in advanced eusocial species with a morphologically differentiated queen–worker caste.</p></div>","PeriodicalId":515,"journal":{"name":"Chemoecology","volume":"32 3","pages":"105 - 116"},"PeriodicalIF":1.6000,"publicationDate":"2022-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Reproduction and fertility signalling under joint juvenile hormone control in primitively eusocial Mischocyttarus wasps\",\"authors\":\"Helena Mendes Ferreira,&nbsp;Rafael Carvalho da Silva,&nbsp;Fabio Santos do Nascimento,&nbsp;Tom Wenseleers,&nbsp;Cintia Akemi Oi\",\"doi\":\"10.1007/s00049-022-00370-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Juvenile hormone (JH) is a key insect hormone involved in the regulation of physiological, developmental and behavioural processes. In social insects, it has been shown that JH can play a key role in modulating reproductive division of labour, age-related division of labour and chemical signalling, and can display marked changes in function of the degree of sociality. Here, we checked the effects of JH on reproduction in single foundresses of two neotropical primitively eusocial wasp species, <i>Mischocyttarus cerberus</i> and <i>Mischocyttarus cassununga</i>, by examining how treatments with the JH-analogue methoprene and the anti-JH precocene affect egg-laying, ovarian activation and chemical profiles. Our hypothesis was that reproduction and the production of particular fertility-linked cuticular hydrocarbon cues might be under shared JH control already in primitively eusocial wasp species, and this could have been a key enabler to allow such cues to later evolve into full-fledged queen pheromone signals in advanced eusocial species. In line with this hypothesis, we show that our hormone treatments significantly affected both egg laying and the production of particular hydrocarbons present on the egg surface. We discuss the relevance of these findings in the context of the evolution of social insect queen pheromones in advanced eusocial species with a morphologically differentiated queen–worker caste.</p></div>\",\"PeriodicalId\":515,\"journal\":{\"name\":\"Chemoecology\",\"volume\":\"32 3\",\"pages\":\"105 - 116\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemoecology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00049-022-00370-y\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemoecology","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s00049-022-00370-y","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 7

摘要

幼虫激素(JH)是一种参与调节昆虫生理、发育和行为过程的关键激素。在群居昆虫中,JH在调节生殖分工、与年龄相关的分工和化学信号方面发挥着关键作用,并在社会性程度的功能上表现出显著的变化。本研究通过观察JH类似物甲基戊二烯和抗JH性早熟对两种新热带原始真社会黄蜂(Mischocyttarus cerberus和Mischocyttarus cassunga)产卵、卵巢激活和化学特征的影响,研究了JH对单个雌性黄蜂繁殖的影响。我们的假设是,在原始的群居黄蜂物种中,繁殖和产生特定的与生育相关的表皮碳氢化合物信号可能已经在共同的JH控制下,这可能是一个关键的因素,允许这些信号后来在高级的群居黄蜂物种中进化成成熟的蜂后信息素信号。根据这一假设,我们表明我们的激素处理显著影响了产卵和存在于卵表面的特定碳氢化合物的产生。我们讨论了这些发现在具有形态分化的蜂王工蜂等级的高级社会物种中群居昆虫蜂王信息素进化的背景下的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reproduction and fertility signalling under joint juvenile hormone control in primitively eusocial Mischocyttarus wasps

Juvenile hormone (JH) is a key insect hormone involved in the regulation of physiological, developmental and behavioural processes. In social insects, it has been shown that JH can play a key role in modulating reproductive division of labour, age-related division of labour and chemical signalling, and can display marked changes in function of the degree of sociality. Here, we checked the effects of JH on reproduction in single foundresses of two neotropical primitively eusocial wasp species, Mischocyttarus cerberus and Mischocyttarus cassununga, by examining how treatments with the JH-analogue methoprene and the anti-JH precocene affect egg-laying, ovarian activation and chemical profiles. Our hypothesis was that reproduction and the production of particular fertility-linked cuticular hydrocarbon cues might be under shared JH control already in primitively eusocial wasp species, and this could have been a key enabler to allow such cues to later evolve into full-fledged queen pheromone signals in advanced eusocial species. In line with this hypothesis, we show that our hormone treatments significantly affected both egg laying and the production of particular hydrocarbons present on the egg surface. We discuss the relevance of these findings in the context of the evolution of social insect queen pheromones in advanced eusocial species with a morphologically differentiated queen–worker caste.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemoecology
Chemoecology 环境科学-生化与分子生物学
CiteScore
4.20
自引率
0.00%
发文量
11
审稿时长
>36 weeks
期刊介绍: It is the aim of Chemoecology to promote and stimulate basic science in the field of chemical ecology by publishing research papers that integrate evolution and/or ecology and chemistry in an attempt to increase our understanding of the biological significance of natural products. Its scopes cover the evolutionary biology, mechanisms and chemistry of biotic interactions and the evolution and synthesis of the underlying natural products. Manuscripts on the evolution and ecology of trophic relationships, intra- and interspecific communication, competition, and other kinds of chemical communication in all types of organismic interactions will be considered suitable for publication. Ecological studies of trophic interactions will be considered also if they are based on the information of the transmission of natural products (e.g. fatty acids) through the food-chain. Chemoecology further publishes papers that relate to the evolution and ecology of interactions mediated by non-volatile compounds (e.g. adhesive secretions). Mechanistic approaches may include the identification, biosynthesis and metabolism of substances that carry information and the elucidation of receptor- and transduction systems using physiological, biochemical and molecular techniques. Papers describing the structure and functional morphology of organs involved in chemical communication will also be considered.
期刊最新文献
Pyrrolizidine alkaloids in tiger moths: trends and knowledge gaps Cuticular hydrocarbons as host recognition cues in specialist and generalist endoparasitoids How to chew gum: the post-ingestion fate of foliar secondary compounds consumed by a eucalypt herbivore Correction: The variability of iridomyrmecin, the venom of the Argentine ant, in its native and invasive ranges Exploring the venom of Ectatomma brunneum Smith (Hymenoptera: Formicidae)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1