{"title":"浅层草原湖泊模型中边界数据的敏感性","authors":"J. Terry, K. Lindenschmidt","doi":"10.1080/07011784.2020.1758215","DOIUrl":null,"url":null,"abstract":"Abstract A good water quality model needs sufficient data to characterise the waterbody, yet monitoring resources are often limited. Inadequate boundary data often contribute to model uncertainty and error. In these situations, the same water quality model can also be used to determine where sampling efforts are best concentrated for improving model reliability. A sensitivity analysis using a one-at-a-time approach on a shallow, eutrophic, Prairie reservoir model investigates which boundary conditions are contributing most to variability in the model. The model results show the lake model has greater sensitivity to its catchment processes than to its in-lake processes. Flows are shown to have the greatest influence on model predictions for all water quality variables tested, followed by air temperature. The lake is facing pressure from climate change, and water management decisions. Results indicate defining the water balance accurately will be a crucial factor in future monitoring programs and modelling efforts.","PeriodicalId":55278,"journal":{"name":"Canadian Water Resources Journal","volume":"45 1","pages":"204 - 215"},"PeriodicalIF":1.7000,"publicationDate":"2020-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/07011784.2020.1758215","citationCount":"1","resultStr":"{\"title\":\"Sensitivity of boundary data in a shallow prairie lake model\",\"authors\":\"J. Terry, K. Lindenschmidt\",\"doi\":\"10.1080/07011784.2020.1758215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A good water quality model needs sufficient data to characterise the waterbody, yet monitoring resources are often limited. Inadequate boundary data often contribute to model uncertainty and error. In these situations, the same water quality model can also be used to determine where sampling efforts are best concentrated for improving model reliability. A sensitivity analysis using a one-at-a-time approach on a shallow, eutrophic, Prairie reservoir model investigates which boundary conditions are contributing most to variability in the model. The model results show the lake model has greater sensitivity to its catchment processes than to its in-lake processes. Flows are shown to have the greatest influence on model predictions for all water quality variables tested, followed by air temperature. The lake is facing pressure from climate change, and water management decisions. Results indicate defining the water balance accurately will be a crucial factor in future monitoring programs and modelling efforts.\",\"PeriodicalId\":55278,\"journal\":{\"name\":\"Canadian Water Resources Journal\",\"volume\":\"45 1\",\"pages\":\"204 - 215\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2020-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/07011784.2020.1758215\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Water Resources Journal\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/07011784.2020.1758215\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Water Resources Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/07011784.2020.1758215","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Sensitivity of boundary data in a shallow prairie lake model
Abstract A good water quality model needs sufficient data to characterise the waterbody, yet monitoring resources are often limited. Inadequate boundary data often contribute to model uncertainty and error. In these situations, the same water quality model can also be used to determine where sampling efforts are best concentrated for improving model reliability. A sensitivity analysis using a one-at-a-time approach on a shallow, eutrophic, Prairie reservoir model investigates which boundary conditions are contributing most to variability in the model. The model results show the lake model has greater sensitivity to its catchment processes than to its in-lake processes. Flows are shown to have the greatest influence on model predictions for all water quality variables tested, followed by air temperature. The lake is facing pressure from climate change, and water management decisions. Results indicate defining the water balance accurately will be a crucial factor in future monitoring programs and modelling efforts.
期刊介绍:
The Canadian Water Resources Journal accepts manuscripts in English or French and publishes abstracts in both official languages. Preference is given to manuscripts focusing on science and policy aspects of Canadian water management. Specifically, manuscripts should stimulate public awareness and understanding of Canada''s water resources, encourage recognition of the high priority of water as a resource, and provide new or increased knowledge on some aspect of Canada''s water.
The Canadian Water Resources Journal was first published in the fall of 1976 and it has grown in stature to be recognized as a quality and important publication in the water resources field.