{"title":"可编程和可重构表面与基里伽米启发的双稳态元素","authors":"Qian Zhang, Ning Pan, Jianguo Cai, Jian Feng","doi":"10.20898/j.iass.2021.013_2","DOIUrl":null,"url":null,"abstract":"Active shaping and recovery are the important paths to reconfiguration and reuse of the structure, but only a few reconfiguration structures have been analyzed and explored, and their applicability also needs to be improved. Active shaping and recovery methods are proposed for the kirigami-inspired\n element with bistability and self- locking property in this paper. A rotationally symmetric kirigami pattern is designed with five geometric parameters at first. The finite element models are established to investigate the vertical tension and compression behavior. The bistability and self-locking\n behavior are analyzed systematically by the relation curves between strain energy, vertical and rotational displacement of the central square facet. The proposed active shaping method can be divided into the in-plane tension stage and the free deformation stage. Moreover, the key of the proposed\n active shaping method is the arrangement of the actuating position and the corresponding displacement and force, which are reported by parametric analysis. The recovery method is also put forward to make the model return from the folding stable state to the unfolding stable state. Besides,\n the cardboard model experiments are performed to verify the numerical analysis results, which is followed by the active shaping analysis of the surface with kirigami-inspired bistable elements. This principle opens a novel path to establish programmable and reconfigurable surface design systems\n with kirigami-inspired elements.","PeriodicalId":42855,"journal":{"name":"Journal of the International Association for Shell and Spatial Structures","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Programmable and Reconfigurable Surfaces with Kirigami-Inspired Bistable Elements\",\"authors\":\"Qian Zhang, Ning Pan, Jianguo Cai, Jian Feng\",\"doi\":\"10.20898/j.iass.2021.013_2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Active shaping and recovery are the important paths to reconfiguration and reuse of the structure, but only a few reconfiguration structures have been analyzed and explored, and their applicability also needs to be improved. Active shaping and recovery methods are proposed for the kirigami-inspired\\n element with bistability and self- locking property in this paper. A rotationally symmetric kirigami pattern is designed with five geometric parameters at first. The finite element models are established to investigate the vertical tension and compression behavior. The bistability and self-locking\\n behavior are analyzed systematically by the relation curves between strain energy, vertical and rotational displacement of the central square facet. The proposed active shaping method can be divided into the in-plane tension stage and the free deformation stage. Moreover, the key of the proposed\\n active shaping method is the arrangement of the actuating position and the corresponding displacement and force, which are reported by parametric analysis. The recovery method is also put forward to make the model return from the folding stable state to the unfolding stable state. Besides,\\n the cardboard model experiments are performed to verify the numerical analysis results, which is followed by the active shaping analysis of the surface with kirigami-inspired bistable elements. This principle opens a novel path to establish programmable and reconfigurable surface design systems\\n with kirigami-inspired elements.\",\"PeriodicalId\":42855,\"journal\":{\"name\":\"Journal of the International Association for Shell and Spatial Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the International Association for Shell and Spatial Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20898/j.iass.2021.013_2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the International Association for Shell and Spatial Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20898/j.iass.2021.013_2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Programmable and Reconfigurable Surfaces with Kirigami-Inspired Bistable Elements
Active shaping and recovery are the important paths to reconfiguration and reuse of the structure, but only a few reconfiguration structures have been analyzed and explored, and their applicability also needs to be improved. Active shaping and recovery methods are proposed for the kirigami-inspired
element with bistability and self- locking property in this paper. A rotationally symmetric kirigami pattern is designed with five geometric parameters at first. The finite element models are established to investigate the vertical tension and compression behavior. The bistability and self-locking
behavior are analyzed systematically by the relation curves between strain energy, vertical and rotational displacement of the central square facet. The proposed active shaping method can be divided into the in-plane tension stage and the free deformation stage. Moreover, the key of the proposed
active shaping method is the arrangement of the actuating position and the corresponding displacement and force, which are reported by parametric analysis. The recovery method is also put forward to make the model return from the folding stable state to the unfolding stable state. Besides,
the cardboard model experiments are performed to verify the numerical analysis results, which is followed by the active shaping analysis of the surface with kirigami-inspired bistable elements. This principle opens a novel path to establish programmable and reconfigurable surface design systems
with kirigami-inspired elements.
期刊介绍:
The Association publishes an international journal, the Journal of the IASS, four times yearly, in print (ISSN 1028-365X) and on-line (ISSN 1996-9015). The months of publication are March, June, September and December. Occasional extra electronic-only issues are included in the on-line version. From this page you can access one or more issues -- a sample issue if you are not logged into the members-only portion of the site, or the current issue and several back issues if you are logged in as a member. For any issue that you can view, you can download articles as .pdf files.