野生小鼠骨髓具有独特的髓系和淋巴系组成和表型

Discovery immunology Pub Date : 2023-04-18 eCollection Date: 2023-01-01 DOI:10.1093/discim/kyad005
Andrew Muir, Alex Bennett, Hannah Smith, Larisa Logunova, Andrew Wolfenden, Jonathan Fenn, Ann E Lowe, Andy Brass, John R Grainger, Joanne E Konkel, Janette E Bradley, Iris Mair, Kathryn J Else
{"title":"野生小鼠骨髓具有独特的髓系和淋巴系组成和表型","authors":"Andrew Muir, Alex Bennett, Hannah Smith, Larisa Logunova, Andrew Wolfenden, Jonathan Fenn, Ann E Lowe, Andy Brass, John R Grainger, Joanne E Konkel, Janette E Bradley, Iris Mair, Kathryn J Else","doi":"10.1093/discim/kyad005","DOIUrl":null,"url":null,"abstract":"<p><p>The murine bone marrow has a central role in immune function and health as the primary source of leukocytes in adult mice. Laboratory mice provide a human-homologous, genetically manipulable and reproducible model that has enabled an immeasurable volume of high-quality immunological research. However, recent research has questioned the translatability of laboratory mouse research into humans and proposed that the exposure of mice to their wild and natural environment may hold the key to further immunological breakthroughs. To date, there have been no studies providing an in-depth cellular analysis of the wild mouse bone marrow. This study utilized wild mice from an isolated island population (Isle of May, Scotland, UK) and performed flow cytometric and histological analysis to characterize the myeloid, lymphoid, hematopoietic progenitor, and adipocyte compartments within the wild mouse bone marrow. We find that, compared to laboratory mouse bone marrow, the wild mouse bone marrow differs in every cell type assessed. Some of the major distinctions include; a smaller B cell compartment with an enriched presence of plasma cells, increased proportions of KLRG1+ CD8+ T cells, diminished CD11b expression in the myeloid lineage and a five-fold enlargement of the eosinophil compartment. We conclude that the wild mouse bone marrow is dramatically distinct from its laboratory counterparts, with multiple phenotypes that to our knowledge have never been observed in laboratory models. Further research into these unique features may uncover novel immunological mechanisms and grant a greater understanding of the role of the immune system in a natural setting.</p>","PeriodicalId":72830,"journal":{"name":"Discovery immunology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10917185/pdf/","citationCount":"0","resultStr":"{\"title\":\"The wild mouse bone marrow has a unique myeloid and lymphoid composition and phenotype.\",\"authors\":\"Andrew Muir, Alex Bennett, Hannah Smith, Larisa Logunova, Andrew Wolfenden, Jonathan Fenn, Ann E Lowe, Andy Brass, John R Grainger, Joanne E Konkel, Janette E Bradley, Iris Mair, Kathryn J Else\",\"doi\":\"10.1093/discim/kyad005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The murine bone marrow has a central role in immune function and health as the primary source of leukocytes in adult mice. Laboratory mice provide a human-homologous, genetically manipulable and reproducible model that has enabled an immeasurable volume of high-quality immunological research. However, recent research has questioned the translatability of laboratory mouse research into humans and proposed that the exposure of mice to their wild and natural environment may hold the key to further immunological breakthroughs. To date, there have been no studies providing an in-depth cellular analysis of the wild mouse bone marrow. This study utilized wild mice from an isolated island population (Isle of May, Scotland, UK) and performed flow cytometric and histological analysis to characterize the myeloid, lymphoid, hematopoietic progenitor, and adipocyte compartments within the wild mouse bone marrow. We find that, compared to laboratory mouse bone marrow, the wild mouse bone marrow differs in every cell type assessed. Some of the major distinctions include; a smaller B cell compartment with an enriched presence of plasma cells, increased proportions of KLRG1+ CD8+ T cells, diminished CD11b expression in the myeloid lineage and a five-fold enlargement of the eosinophil compartment. We conclude that the wild mouse bone marrow is dramatically distinct from its laboratory counterparts, with multiple phenotypes that to our knowledge have never been observed in laboratory models. Further research into these unique features may uncover novel immunological mechanisms and grant a greater understanding of the role of the immune system in a natural setting.</p>\",\"PeriodicalId\":72830,\"journal\":{\"name\":\"Discovery immunology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10917185/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discovery immunology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/discim/kyad005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discovery immunology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/discim/kyad005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

小鼠骨髓作为成年小鼠白细胞的主要来源,在免疫功能和健康中起着核心作用。实验室小鼠提供了一种人类同源、基因可操作和可复制的模型,使高质量的免疫学研究成为可能。然而,最近的研究对实验室小鼠研究的可移植性提出了质疑,并提出将小鼠暴露于野生和自然环境中可能是进一步免疫学突破的关键。迄今为止,还没有研究对野生小鼠骨髓进行深入的细胞分析。本研究利用来自孤岛种群(英国苏格兰五月岛)的野生小鼠,并进行流式细胞术和组织学分析,以表征野生小鼠骨髓中的髓系、淋巴系、造血祖细胞和脂肪细胞区室。我们发现,与实验室小鼠的骨髓相比,野生小鼠的骨髓在每一种被评估的细胞类型上都不同。一些主要的区别包括;B细胞室变小,浆细胞增多,KLRG1+ CD8+ T细胞比例增加,骨髓谱系中CD11b表达减少,嗜酸性细胞室增大5倍。我们得出的结论是,野生小鼠骨髓与实验室小鼠骨髓截然不同,具有多种表型,据我们所知,从未在实验室模型中观察到过。对这些独特特征的进一步研究可能会揭示新的免疫机制,并对免疫系统在自然环境中的作用有更深入的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The wild mouse bone marrow has a unique myeloid and lymphoid composition and phenotype.

The murine bone marrow has a central role in immune function and health as the primary source of leukocytes in adult mice. Laboratory mice provide a human-homologous, genetically manipulable and reproducible model that has enabled an immeasurable volume of high-quality immunological research. However, recent research has questioned the translatability of laboratory mouse research into humans and proposed that the exposure of mice to their wild and natural environment may hold the key to further immunological breakthroughs. To date, there have been no studies providing an in-depth cellular analysis of the wild mouse bone marrow. This study utilized wild mice from an isolated island population (Isle of May, Scotland, UK) and performed flow cytometric and histological analysis to characterize the myeloid, lymphoid, hematopoietic progenitor, and adipocyte compartments within the wild mouse bone marrow. We find that, compared to laboratory mouse bone marrow, the wild mouse bone marrow differs in every cell type assessed. Some of the major distinctions include; a smaller B cell compartment with an enriched presence of plasma cells, increased proportions of KLRG1+ CD8+ T cells, diminished CD11b expression in the myeloid lineage and a five-fold enlargement of the eosinophil compartment. We conclude that the wild mouse bone marrow is dramatically distinct from its laboratory counterparts, with multiple phenotypes that to our knowledge have never been observed in laboratory models. Further research into these unique features may uncover novel immunological mechanisms and grant a greater understanding of the role of the immune system in a natural setting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Identification of a transcription factor network regulating anti-TNF mediated IL10 expression in human CD4+ T cells Correction to: Lunar-linked biological rhythms in the immune system of freshwater three-spined stickleback. Assessing immune phenotypes using simple proxy measures: promise and limitations. Extracellular vesicles: an emerging tool for wild immunology. Lunar-linked biological rhythms in the immune system of freshwater three-spined stickleback.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1