可扩展Marshall-Olkin分布的Markovian模型的实现

IF 0.6 Q4 STATISTICS & PROBABILITY Dependence Modeling Pub Date : 2022-01-01 DOI:10.1515/demo-2022-0151
Henrik Sloot
{"title":"可扩展Marshall-Olkin分布的Markovian模型的实现","authors":"Henrik Sloot","doi":"10.1515/demo-2022-0151","DOIUrl":null,"url":null,"abstract":"Abstract We derive a novel stochastic representation of exchangeable Marshall–Olkin distributions based on their death-counting processes. We show that these processes are Markov. Furthermore, we provide a numerically stable approximation of their infinitesimal generator matrices in the extendible case. This approach uses integral representations of Bernstein functions to calculate the generator’s first row, and then uses a recursion to calculate the remaining rows. Combining the Markov representation with the numerically stable approximation of corresponding generators allows us to sample extendible Marshall–Olkin distributions with a flexible simulation algorithm derived from known Markov sampling strategies. Finally, we benchmark an implementation of this Markov-based simulation algorithm against alternative simulation algorithms based on the Lévy frailty model, the Arnold model, and the exogenous shock model.","PeriodicalId":43690,"journal":{"name":"Dependence Modeling","volume":"10 1","pages":"308 - 343"},"PeriodicalIF":0.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implementing Markovian models for extendible Marshall–Olkin distributions\",\"authors\":\"Henrik Sloot\",\"doi\":\"10.1515/demo-2022-0151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We derive a novel stochastic representation of exchangeable Marshall–Olkin distributions based on their death-counting processes. We show that these processes are Markov. Furthermore, we provide a numerically stable approximation of their infinitesimal generator matrices in the extendible case. This approach uses integral representations of Bernstein functions to calculate the generator’s first row, and then uses a recursion to calculate the remaining rows. Combining the Markov representation with the numerically stable approximation of corresponding generators allows us to sample extendible Marshall–Olkin distributions with a flexible simulation algorithm derived from known Markov sampling strategies. Finally, we benchmark an implementation of this Markov-based simulation algorithm against alternative simulation algorithms based on the Lévy frailty model, the Arnold model, and the exogenous shock model.\",\"PeriodicalId\":43690,\"journal\":{\"name\":\"Dependence Modeling\",\"volume\":\"10 1\",\"pages\":\"308 - 343\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dependence Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/demo-2022-0151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dependence Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/demo-2022-0151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

摘要基于死亡计数过程,我们导出了可交换Marshall–Olkin分布的一种新的随机表示。我们证明了这些过程是马尔可夫过程。此外,在可扩展的情况下,我们提供了它们的无穷小生成矩阵的数值稳定近似。这种方法使用Bernstein函数的积分表示来计算生成器的第一行,然后使用递归来计算其余行。将马尔可夫表示与相应生成器的数值稳定近似相结合,使我们能够使用从已知马尔可夫采样策略导出的灵活模拟算法对可扩展的Marshall–Olkin分布进行采样。最后,我们将这种基于马尔可夫的模拟算法的实现与基于莱维脆弱性模型、阿诺德模型和外生冲击模型的替代模拟算法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Implementing Markovian models for extendible Marshall–Olkin distributions
Abstract We derive a novel stochastic representation of exchangeable Marshall–Olkin distributions based on their death-counting processes. We show that these processes are Markov. Furthermore, we provide a numerically stable approximation of their infinitesimal generator matrices in the extendible case. This approach uses integral representations of Bernstein functions to calculate the generator’s first row, and then uses a recursion to calculate the remaining rows. Combining the Markov representation with the numerically stable approximation of corresponding generators allows us to sample extendible Marshall–Olkin distributions with a flexible simulation algorithm derived from known Markov sampling strategies. Finally, we benchmark an implementation of this Markov-based simulation algorithm against alternative simulation algorithms based on the Lévy frailty model, the Arnold model, and the exogenous shock model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Dependence Modeling
Dependence Modeling STATISTICS & PROBABILITY-
CiteScore
1.00
自引率
0.00%
发文量
18
审稿时长
12 weeks
期刊介绍: The journal Dependence Modeling aims at providing a medium for exchanging results and ideas in the area of multivariate dependence modeling. It is an open access fully peer-reviewed journal providing the readers with free, instant, and permanent access to all content worldwide. Dependence Modeling is listed by Web of Science (Emerging Sources Citation Index), Scopus, MathSciNet and Zentralblatt Math. The journal presents different types of articles: -"Research Articles" on fundamental theoretical aspects, as well as on significant applications in science, engineering, economics, finance, insurance and other fields. -"Review Articles" which present the existing literature on the specific topic from new perspectives. -"Interview articles" limited to two papers per year, covering interviews with milestone personalities in the field of Dependence Modeling. The journal topics include (but are not limited to):  -Copula methods -Multivariate distributions -Estimation and goodness-of-fit tests -Measures of association -Quantitative risk management -Risk measures and stochastic orders -Time series -Environmental sciences -Computational methods and software -Extreme-value theory -Limit laws -Mass Transportations
期刊最新文献
Joint lifetime modeling with matrix distributions On copulas with a trapezoid support When copulas and smoothing met: An interview with Irène Gijbels Mutual volatility transmission between assets and trading places Functions operating on several multivariate distribution functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1