B. Safa, T. Arkebauer, Qiuming Zhu, A. Suyker, S. Irmak
{"title":"利用人工神经网络(ANNs)填补旱作玉米生态系统净CO2交换(NEE)缺口","authors":"B. Safa, T. Arkebauer, Qiuming Zhu, A. Suyker, S. Irmak","doi":"10.4236/JSEA.2021.145010","DOIUrl":null,"url":null,"abstract":"The eddy covariance technique is an accurate and direct tool to measure the Net Ecosystem Exchange (NEE) of carbon dioxide. However, sometimes conditions are not amenable to measurements using this technique. Thus, different methods have been developed to allow gap-filling and quality assessment of eddy covariance data sets. In this study first, two different Artificial Neural Networks (ANNs) approaches, the Multi-layer Perceptron (MLP) trained by the Back-Propagation (BP) algorithm, and the Radial Basis Function (RBF), were used to fill missing NEE data measured above rain-fed maize at the University of Nebraska-Lincoln Agricultural Research and Development Center near Mead, Nebraska. The gap-filled data were then compared by different statistical indices to gap-filled data obtained with the technique suggested by Suyker and Verma in 2005 [SV the structure of RBF and MLP (BP) networks was constant. However, data analysis indicated Papale’s approach gave better fits than the RBF and MLP (BP) methods. Thus, based on this work, Papale’s approach is the best method to estimate the missing data; though the applied statistical indices, which were used for model evaluation, show little difference between Papale’s approach and the RBF and MLP (BP).","PeriodicalId":62222,"journal":{"name":"软件工程与应用(英文)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Gap Filling of Net Ecosystem CO2 Exchange (NEE) above Rain-Fed Maize Using Artificial Neural Networks (ANNs)\",\"authors\":\"B. Safa, T. Arkebauer, Qiuming Zhu, A. Suyker, S. Irmak\",\"doi\":\"10.4236/JSEA.2021.145010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The eddy covariance technique is an accurate and direct tool to measure the Net Ecosystem Exchange (NEE) of carbon dioxide. However, sometimes conditions are not amenable to measurements using this technique. Thus, different methods have been developed to allow gap-filling and quality assessment of eddy covariance data sets. In this study first, two different Artificial Neural Networks (ANNs) approaches, the Multi-layer Perceptron (MLP) trained by the Back-Propagation (BP) algorithm, and the Radial Basis Function (RBF), were used to fill missing NEE data measured above rain-fed maize at the University of Nebraska-Lincoln Agricultural Research and Development Center near Mead, Nebraska. The gap-filled data were then compared by different statistical indices to gap-filled data obtained with the technique suggested by Suyker and Verma in 2005 [SV the structure of RBF and MLP (BP) networks was constant. However, data analysis indicated Papale’s approach gave better fits than the RBF and MLP (BP) methods. Thus, based on this work, Papale’s approach is the best method to estimate the missing data; though the applied statistical indices, which were used for model evaluation, show little difference between Papale’s approach and the RBF and MLP (BP).\",\"PeriodicalId\":62222,\"journal\":{\"name\":\"软件工程与应用(英文)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"软件工程与应用(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.4236/JSEA.2021.145010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"软件工程与应用(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/JSEA.2021.145010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Gap Filling of Net Ecosystem CO2 Exchange (NEE) above Rain-Fed Maize Using Artificial Neural Networks (ANNs)
The eddy covariance technique is an accurate and direct tool to measure the Net Ecosystem Exchange (NEE) of carbon dioxide. However, sometimes conditions are not amenable to measurements using this technique. Thus, different methods have been developed to allow gap-filling and quality assessment of eddy covariance data sets. In this study first, two different Artificial Neural Networks (ANNs) approaches, the Multi-layer Perceptron (MLP) trained by the Back-Propagation (BP) algorithm, and the Radial Basis Function (RBF), were used to fill missing NEE data measured above rain-fed maize at the University of Nebraska-Lincoln Agricultural Research and Development Center near Mead, Nebraska. The gap-filled data were then compared by different statistical indices to gap-filled data obtained with the technique suggested by Suyker and Verma in 2005 [SV the structure of RBF and MLP (BP) networks was constant. However, data analysis indicated Papale’s approach gave better fits than the RBF and MLP (BP) methods. Thus, based on this work, Papale’s approach is the best method to estimate the missing data; though the applied statistical indices, which were used for model evaluation, show little difference between Papale’s approach and the RBF and MLP (BP).