{"title":"纳米填料浓度对高压电缆用聚丙烯纳米复合材料性能的影响","authors":"Sendil Kumar Angalane, Elanseralathan Kasinathan","doi":"10.2478/jee-2022-0023","DOIUrl":null,"url":null,"abstract":"Abstract Polymeric insulation for HVDC cable is attracting more attention in the modern power transmission system. Especially, the thermoplastic material is desirable for power cable insulation because of its recyclability and ease of processing. Thermoplastic material development is a good alternative to cross-linked polyethylene in the future. Polypropylene has the advantage of avoiding by-products during cable production, which can minimize space accumulation and degassing costs. Therefore, this study investigates the influence of nanofillers on the structural properties of isotactic polypropylene. In addition, the proposed composite material’s morphology, melting, dielectric permittivity, and breakdown strength are examined. Different weight percentages of inorganic nanofillers such as TiO2 and ZnO are used to make nanocomposite thin films. With increasing filler concentration, the dielectric constant of the nanocomposite thin film increases. Apart from that, the dielectric loss of the TiO2 nanocomposite thin film increases with weight percentage initially and it falls nearer to virgin material at a higher frequency. The breakdown strength of the nanocomposite materials shows a similar variation with filler concentration. TiO2 is more resistant to deterioration than ZnO composite. Based on the results of the complete investigation, the TiO2 nanocomposite is better suited for the insulation of HVDC cables.","PeriodicalId":15661,"journal":{"name":"Journal of Electrical Engineering-elektrotechnicky Casopis","volume":"73 1","pages":"174 - 181"},"PeriodicalIF":1.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of nanofiller concentration on polypropylene nanocomposites for high voltage cables\",\"authors\":\"Sendil Kumar Angalane, Elanseralathan Kasinathan\",\"doi\":\"10.2478/jee-2022-0023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Polymeric insulation for HVDC cable is attracting more attention in the modern power transmission system. Especially, the thermoplastic material is desirable for power cable insulation because of its recyclability and ease of processing. Thermoplastic material development is a good alternative to cross-linked polyethylene in the future. Polypropylene has the advantage of avoiding by-products during cable production, which can minimize space accumulation and degassing costs. Therefore, this study investigates the influence of nanofillers on the structural properties of isotactic polypropylene. In addition, the proposed composite material’s morphology, melting, dielectric permittivity, and breakdown strength are examined. Different weight percentages of inorganic nanofillers such as TiO2 and ZnO are used to make nanocomposite thin films. With increasing filler concentration, the dielectric constant of the nanocomposite thin film increases. Apart from that, the dielectric loss of the TiO2 nanocomposite thin film increases with weight percentage initially and it falls nearer to virgin material at a higher frequency. The breakdown strength of the nanocomposite materials shows a similar variation with filler concentration. TiO2 is more resistant to deterioration than ZnO composite. Based on the results of the complete investigation, the TiO2 nanocomposite is better suited for the insulation of HVDC cables.\",\"PeriodicalId\":15661,\"journal\":{\"name\":\"Journal of Electrical Engineering-elektrotechnicky Casopis\",\"volume\":\"73 1\",\"pages\":\"174 - 181\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electrical Engineering-elektrotechnicky Casopis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2478/jee-2022-0023\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrical Engineering-elektrotechnicky Casopis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2478/jee-2022-0023","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Influence of nanofiller concentration on polypropylene nanocomposites for high voltage cables
Abstract Polymeric insulation for HVDC cable is attracting more attention in the modern power transmission system. Especially, the thermoplastic material is desirable for power cable insulation because of its recyclability and ease of processing. Thermoplastic material development is a good alternative to cross-linked polyethylene in the future. Polypropylene has the advantage of avoiding by-products during cable production, which can minimize space accumulation and degassing costs. Therefore, this study investigates the influence of nanofillers on the structural properties of isotactic polypropylene. In addition, the proposed composite material’s morphology, melting, dielectric permittivity, and breakdown strength are examined. Different weight percentages of inorganic nanofillers such as TiO2 and ZnO are used to make nanocomposite thin films. With increasing filler concentration, the dielectric constant of the nanocomposite thin film increases. Apart from that, the dielectric loss of the TiO2 nanocomposite thin film increases with weight percentage initially and it falls nearer to virgin material at a higher frequency. The breakdown strength of the nanocomposite materials shows a similar variation with filler concentration. TiO2 is more resistant to deterioration than ZnO composite. Based on the results of the complete investigation, the TiO2 nanocomposite is better suited for the insulation of HVDC cables.
期刊介绍:
The joint publication of the Slovak University of Technology, Faculty of Electrical Engineering and Information Technology, and of the Slovak Academy of Sciences, Institute of Electrical Engineering, is a wide-scope journal published bimonthly and comprising.
-Automation and Control-
Computer Engineering-
Electronics and Microelectronics-
Electro-physics and Electromagnetism-
Material Science-
Measurement and Metrology-
Power Engineering and Energy Conversion-
Signal Processing and Telecommunications