Thanh Tuan Le, H. Nguyen, K. Rudzki, L. Rowiński, V. Bui, Thanh H. Truong, H. C. Le, Nguyen Dang Khoa Pham
{"title":"实现国际海事组织绿色物流目标的海港管理战略:技术和政策解决方案","authors":"Thanh Tuan Le, H. Nguyen, K. Rudzki, L. Rowiński, V. Bui, Thanh H. Truong, H. C. Le, Nguyen Dang Khoa Pham","doi":"10.2478/pomr-2023-0031","DOIUrl":null,"url":null,"abstract":"Abstract Recently, because of serious global challenges including the consumption of energy and climate change, there has been an increase in interest in the environmental effect of port operations and expansion. More interestingly, a strategic tendency in seaport advancement has been to manage the seaport system using a model which balances environmental volatility and economic development demands. An energy efficient management system is regarded as being vital for meeting the strict rules aimed at reducing the environmental pollution caused by port facility activities. Moreover, the enhanced supervision of port system operating methods and technical resolutions for energy utilisation also raise significant issues. In addition, low-carbon ports, as well as green port models, are becoming increasingly popular in seafaring nations. This study comprises a comprehensive assessment of operational methods, cutting-edge technologies for sustainable generation, storage, and transformation of energy, as well as systems of smart grid management, to develop a green seaport system, obtaining optimum operational efficiency and environmental protection. It is thought that using a holistic method and adaptive management, based on a framework of sustainable and green energy, could stimulate creative thinking, consensus building, and cooperation, as well as streamline the regulatory demands associated with port energy management. Although several aspects of sustainability and green energy could increase initial expenditure, they might result in significant life cycle savings due to decreased consumption of energy and output of emissions, as well as reduced operational and maintenance expenses.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Management Strategy for Seaports Aspiring to Green Logistical Goals of IMO: Technology and Policy Solutions\",\"authors\":\"Thanh Tuan Le, H. Nguyen, K. Rudzki, L. Rowiński, V. Bui, Thanh H. Truong, H. C. Le, Nguyen Dang Khoa Pham\",\"doi\":\"10.2478/pomr-2023-0031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Recently, because of serious global challenges including the consumption of energy and climate change, there has been an increase in interest in the environmental effect of port operations and expansion. More interestingly, a strategic tendency in seaport advancement has been to manage the seaport system using a model which balances environmental volatility and economic development demands. An energy efficient management system is regarded as being vital for meeting the strict rules aimed at reducing the environmental pollution caused by port facility activities. Moreover, the enhanced supervision of port system operating methods and technical resolutions for energy utilisation also raise significant issues. In addition, low-carbon ports, as well as green port models, are becoming increasingly popular in seafaring nations. This study comprises a comprehensive assessment of operational methods, cutting-edge technologies for sustainable generation, storage, and transformation of energy, as well as systems of smart grid management, to develop a green seaport system, obtaining optimum operational efficiency and environmental protection. It is thought that using a holistic method and adaptive management, based on a framework of sustainable and green energy, could stimulate creative thinking, consensus building, and cooperation, as well as streamline the regulatory demands associated with port energy management. Although several aspects of sustainability and green energy could increase initial expenditure, they might result in significant life cycle savings due to decreased consumption of energy and output of emissions, as well as reduced operational and maintenance expenses.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2478/pomr-2023-0031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2478/pomr-2023-0031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Management Strategy for Seaports Aspiring to Green Logistical Goals of IMO: Technology and Policy Solutions
Abstract Recently, because of serious global challenges including the consumption of energy and climate change, there has been an increase in interest in the environmental effect of port operations and expansion. More interestingly, a strategic tendency in seaport advancement has been to manage the seaport system using a model which balances environmental volatility and economic development demands. An energy efficient management system is regarded as being vital for meeting the strict rules aimed at reducing the environmental pollution caused by port facility activities. Moreover, the enhanced supervision of port system operating methods and technical resolutions for energy utilisation also raise significant issues. In addition, low-carbon ports, as well as green port models, are becoming increasingly popular in seafaring nations. This study comprises a comprehensive assessment of operational methods, cutting-edge technologies for sustainable generation, storage, and transformation of energy, as well as systems of smart grid management, to develop a green seaport system, obtaining optimum operational efficiency and environmental protection. It is thought that using a holistic method and adaptive management, based on a framework of sustainable and green energy, could stimulate creative thinking, consensus building, and cooperation, as well as streamline the regulatory demands associated with port energy management. Although several aspects of sustainability and green energy could increase initial expenditure, they might result in significant life cycle savings due to decreased consumption of energy and output of emissions, as well as reduced operational and maintenance expenses.