贝叶斯说服如何帮助减少非法停车和其他不受欢迎的社会行为

IF 2.2 2区 经济学 Q2 ECONOMICS American Economic Journal-Microeconomics Pub Date : 2022-02-01 DOI:10.1257/mic.20190295
P. Hernández, Z. Neeman
{"title":"贝叶斯说服如何帮助减少非法停车和其他不受欢迎的社会行为","authors":"P. Hernández, Z. Neeman","doi":"10.1257/mic.20190295","DOIUrl":null,"url":null,"abstract":"We consider the question of how best to allocate enforcement resources across different locations with the goal of deterring unwanted behavior. We rely on “Bayesian persuasion” to improve deterrence. We focus on the case where agents care only about the expected amount of enforcement resources given messages received. Optimization in the space of induced mean posterior beliefs involves a partial convexification of the objective function. We describe interpretable conditions under which it is possible to explicitly solve the problem with only two messages: “high enforcement” and “enforcement as usual.” We also provide a tight upper bound on the total number of messages needed to achieve the optimal solution in the general case as well as a general example that attains this bound. (JEL D83, K42, R41)","PeriodicalId":47467,"journal":{"name":"American Economic Journal-Microeconomics","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"How Bayesian Persuasion Can Help Reduce Illegal Parking and Other Socially Undesirable Behavior\",\"authors\":\"P. Hernández, Z. Neeman\",\"doi\":\"10.1257/mic.20190295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the question of how best to allocate enforcement resources across different locations with the goal of deterring unwanted behavior. We rely on “Bayesian persuasion” to improve deterrence. We focus on the case where agents care only about the expected amount of enforcement resources given messages received. Optimization in the space of induced mean posterior beliefs involves a partial convexification of the objective function. We describe interpretable conditions under which it is possible to explicitly solve the problem with only two messages: “high enforcement” and “enforcement as usual.” We also provide a tight upper bound on the total number of messages needed to achieve the optimal solution in the general case as well as a general example that attains this bound. (JEL D83, K42, R41)\",\"PeriodicalId\":47467,\"journal\":{\"name\":\"American Economic Journal-Microeconomics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Economic Journal-Microeconomics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1257/mic.20190295\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Economic Journal-Microeconomics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1257/mic.20190295","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 11

摘要

我们考虑的问题是如何最好地在不同地点分配执法资源,以阻止不必要的行为。我们依靠“贝叶斯说服”来提高威慑力。我们关注的是这样一种情况:在收到消息的情况下,特工只关心预期的执法资源数量。在诱导平均后验信念空间中的优化涉及目标函数的部分凸化。我们描述了一些可解释的条件,在这些条件下,可以仅用两条消息显式地解决问题:“高度强制执行”和“照常强制执行”。我们还提供了在一般情况下实现最优解决方案所需的消息总数的严格上限,以及达到该上限的一般示例。(凝胶d83, k42, r41)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
How Bayesian Persuasion Can Help Reduce Illegal Parking and Other Socially Undesirable Behavior
We consider the question of how best to allocate enforcement resources across different locations with the goal of deterring unwanted behavior. We rely on “Bayesian persuasion” to improve deterrence. We focus on the case where agents care only about the expected amount of enforcement resources given messages received. Optimization in the space of induced mean posterior beliefs involves a partial convexification of the objective function. We describe interpretable conditions under which it is possible to explicitly solve the problem with only two messages: “high enforcement” and “enforcement as usual.” We also provide a tight upper bound on the total number of messages needed to achieve the optimal solution in the general case as well as a general example that attains this bound. (JEL D83, K42, R41)
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
4.20%
发文量
86
期刊最新文献
Smaller Slices of a Growing Pie: The Effects of Entry in Platform Markets Using Team Discussions to Understand Behavior in Indefinitely Repeated Prisoner’s Dilemma Games Slope Takers in Anonymous Markets Monopolistic Competition and Efficiency under Firm Heterogeneity and Nonadditive Preferences Front Matter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1