{"title":"基于磁流变制动的汽车防抱死制动系统研究","authors":"Romit Kamble, S. Patil","doi":"10.4018/ijmmme.2019100102","DOIUrl":null,"url":null,"abstract":"The present work explores a magnetorheological brake (MRB)-based anti-lock brake system (ABS) proposed for a vehicular application. Because of its quick response time, MRB is being considered as a substitute for the conventional hydraulic brake (CHB), commonly used for road vehicles. ABS is used along with CHB to prevent wheel lockup due to severe braking and thereby maintain the stability of the vehicle. This work envisages ABS for a vehicle using MRB instead of CHB. The braking maneuver for a typical mid-size car with and without ABS is simulated in a MATLAB environment. Both versions, a CHB-based ABS and a MRB-based ABS are considered in simulations. The braking performance in terms of stopping time and stopping distance is estimated. A PID and a Fuzzy controller are proposed for improving the control performance of the brake system. The comparative analysis based on the simulations helps make estimations for MRB-based ABS performance.","PeriodicalId":43174,"journal":{"name":"International Journal of Manufacturing Materials and Mechanical Engineering","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4018/ijmmme.2019100102","citationCount":"2","resultStr":"{\"title\":\"Exploring Magnetorheological Brake-Based Anti-Lock Brake System for Automotive Application\",\"authors\":\"Romit Kamble, S. Patil\",\"doi\":\"10.4018/ijmmme.2019100102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present work explores a magnetorheological brake (MRB)-based anti-lock brake system (ABS) proposed for a vehicular application. Because of its quick response time, MRB is being considered as a substitute for the conventional hydraulic brake (CHB), commonly used for road vehicles. ABS is used along with CHB to prevent wheel lockup due to severe braking and thereby maintain the stability of the vehicle. This work envisages ABS for a vehicle using MRB instead of CHB. The braking maneuver for a typical mid-size car with and without ABS is simulated in a MATLAB environment. Both versions, a CHB-based ABS and a MRB-based ABS are considered in simulations. The braking performance in terms of stopping time and stopping distance is estimated. A PID and a Fuzzy controller are proposed for improving the control performance of the brake system. The comparative analysis based on the simulations helps make estimations for MRB-based ABS performance.\",\"PeriodicalId\":43174,\"journal\":{\"name\":\"International Journal of Manufacturing Materials and Mechanical Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4018/ijmmme.2019100102\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Manufacturing Materials and Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijmmme.2019100102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Manufacturing Materials and Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijmmme.2019100102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Exploring Magnetorheological Brake-Based Anti-Lock Brake System for Automotive Application
The present work explores a magnetorheological brake (MRB)-based anti-lock brake system (ABS) proposed for a vehicular application. Because of its quick response time, MRB is being considered as a substitute for the conventional hydraulic brake (CHB), commonly used for road vehicles. ABS is used along with CHB to prevent wheel lockup due to severe braking and thereby maintain the stability of the vehicle. This work envisages ABS for a vehicle using MRB instead of CHB. The braking maneuver for a typical mid-size car with and without ABS is simulated in a MATLAB environment. Both versions, a CHB-based ABS and a MRB-based ABS are considered in simulations. The braking performance in terms of stopping time and stopping distance is estimated. A PID and a Fuzzy controller are proposed for improving the control performance of the brake system. The comparative analysis based on the simulations helps make estimations for MRB-based ABS performance.