两种可控变形对柔性水翼能量提取的影响

IF 3.9 4区 工程技术 Q1 ENGINEERING, MARINE Brodogradnja Pub Date : 2022-01-01 DOI:10.21278/brod73106
Yubing Zhang, Yong Wang, Guangyong Sun, Jiazhen Han, Yudong Xie
{"title":"两种可控变形对柔性水翼能量提取的影响","authors":"Yubing Zhang, Yong Wang, Guangyong Sun, Jiazhen Han, Yudong Xie","doi":"10.21278/brod73106","DOIUrl":null,"url":null,"abstract":"Energy extraction capacity of controllably flexible hydrofoil was studied under two identified deformation modes. Deformation modes, flexure parameters (flexure amplitude  and flexure coefficient ) and motion parameters (reduced frequency f* and pitching amplitude 0) were investigated to understand the effects of controllably flexible deformation on energy extraction. The results reveal that deformation modes affect the effective angle of attack and vortex structure, which influence hydrodynamic performance. The energy extraction capacity improves from the deformation mode 2 to the rigid hydrofoil and then to the deformation mode 1. Under the deformation mode 1, lift, moment and power coefficients are increased obviously with the increase of , while they increase slightly with . Power coefficients and efficiency are sensitive to , which influences the development of leading-edge vortices. The flexible coefficient  affects the wake structure, which has less impact on variation of force coefficient. As the increase in f*, averaged power coefficients firstly increase and then decrease. Further, the optimal f* is subjected to 0. Interestingly, a critical reduced frequency f*s, which is generally increase with increasing 0, was found under three modes. The condition that f* > f*s. is a prerequisite for subsequent adjustments of flexure modes and parameters according to different requirement of power coefficient under different tidal currents. The range of high efficiency () is: deformation mode 1 (36.1%<<54.3%) > rigid hydrofoils (34.2%<<41%) > deformation mode 2 (26.9%<<30.3%).","PeriodicalId":55594,"journal":{"name":"Brodogradnja","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"EFFECTS OF TWO TYPES OF CONTROLLABLE DEFORMATION ON ENERGY EXTRACTION OF A FLEXIBLE HYDROFOIL\",\"authors\":\"Yubing Zhang, Yong Wang, Guangyong Sun, Jiazhen Han, Yudong Xie\",\"doi\":\"10.21278/brod73106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Energy extraction capacity of controllably flexible hydrofoil was studied under two identified deformation modes. Deformation modes, flexure parameters (flexure amplitude  and flexure coefficient ) and motion parameters (reduced frequency f* and pitching amplitude 0) were investigated to understand the effects of controllably flexible deformation on energy extraction. The results reveal that deformation modes affect the effective angle of attack and vortex structure, which influence hydrodynamic performance. The energy extraction capacity improves from the deformation mode 2 to the rigid hydrofoil and then to the deformation mode 1. Under the deformation mode 1, lift, moment and power coefficients are increased obviously with the increase of , while they increase slightly with . Power coefficients and efficiency are sensitive to , which influences the development of leading-edge vortices. The flexible coefficient  affects the wake structure, which has less impact on variation of force coefficient. As the increase in f*, averaged power coefficients firstly increase and then decrease. Further, the optimal f* is subjected to 0. Interestingly, a critical reduced frequency f*s, which is generally increase with increasing 0, was found under three modes. The condition that f* > f*s. is a prerequisite for subsequent adjustments of flexure modes and parameters according to different requirement of power coefficient under different tidal currents. The range of high efficiency () is: deformation mode 1 (36.1%<<54.3%) > rigid hydrofoils (34.2%<<41%) > deformation mode 2 (26.9%<<30.3%).\",\"PeriodicalId\":55594,\"journal\":{\"name\":\"Brodogradnja\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brodogradnja\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.21278/brod73106\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brodogradnja","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.21278/brod73106","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 1

摘要

在确定的两种变形模式下,研究了可控柔性水翼的能量提取能力。研究了变形模式、挠曲参数(挠曲幅度和挠曲系数)和运动参数(降频f*和俯仰幅度0),以了解可控柔性变形对能量提取的影响。结果表明,变形模式会影响有效迎角和涡结构,从而影响流动力性能。从变形模式2到刚性水翼,再到变形模式1,能量提取能力提高。在变形模式1下,升力系数、弯矩系数和功率系数随的增大而明显增大,随的增大而略有增大。功率系数和效率对很敏感,影响前缘涡的发展。柔性系数影响尾迹结构,对力系数变化的影响较小。随着f*的增大,平均功率系数先增大后减小。此外,最优f*服从于 0。有趣的是,在三种模式下,发现了一个临界降低频率f*s,它通常随着增加的幅度而增加。条件f* > f*s。是后续根据不同潮流下功率系数的不同要求调整挠曲模态和参数的前提。高效率范围为:变形模式1(36.1%)(变形模式2(34.2%)(26.9%< 30.3%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EFFECTS OF TWO TYPES OF CONTROLLABLE DEFORMATION ON ENERGY EXTRACTION OF A FLEXIBLE HYDROFOIL
Energy extraction capacity of controllably flexible hydrofoil was studied under two identified deformation modes. Deformation modes, flexure parameters (flexure amplitude  and flexure coefficient ) and motion parameters (reduced frequency f* and pitching amplitude 0) were investigated to understand the effects of controllably flexible deformation on energy extraction. The results reveal that deformation modes affect the effective angle of attack and vortex structure, which influence hydrodynamic performance. The energy extraction capacity improves from the deformation mode 2 to the rigid hydrofoil and then to the deformation mode 1. Under the deformation mode 1, lift, moment and power coefficients are increased obviously with the increase of , while they increase slightly with . Power coefficients and efficiency are sensitive to , which influences the development of leading-edge vortices. The flexible coefficient  affects the wake structure, which has less impact on variation of force coefficient. As the increase in f*, averaged power coefficients firstly increase and then decrease. Further, the optimal f* is subjected to 0. Interestingly, a critical reduced frequency f*s, which is generally increase with increasing 0, was found under three modes. The condition that f* > f*s. is a prerequisite for subsequent adjustments of flexure modes and parameters according to different requirement of power coefficient under different tidal currents. The range of high efficiency () is: deformation mode 1 (36.1%<<54.3%) > rigid hydrofoils (34.2%<<41%) > deformation mode 2 (26.9%<<30.3%).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Brodogradnja
Brodogradnja ENGINEERING, MARINE-
CiteScore
4.30
自引率
38.90%
发文量
33
审稿时长
>12 weeks
期刊介绍: The journal is devoted to multidisciplinary researches in the fields of theoretical and experimental naval architecture and oceanology as well as to challenging problems in shipbuilding as well shipping, offshore and related shipbuilding industries worldwide. The aim of the journal is to integrate technical interests in shipbuilding, ocean engineering, sea and ocean shipping, inland navigation and intermodal transportation as well as environmental issues, overall safety, objects for wind, marine and hydrokinetic renewable energy production and sustainable transportation development at seas, oceans and inland waterways in relations to shipbuilding and naval architecture. The journal focuses on hydrodynamics, structures, reliability, materials, construction, design, optimization, production engineering, building and organization of building, project management, repair and maintenance planning, information systems in shipyards, quality assurance as well as outfitting, powering, autonomous marine vehicles, power plants and equipment onboard. Brodogradnja publishes original scientific papers, review papers, preliminary communications and important professional papers relevant in engineering and technology.
期刊最新文献
Probabilistic evaluation of dynamic positioning operability with a Quasi-Monte Carlo approach Influence of scale effect on flow field offset for ships in confined waters On the propeller wake evolution using large eddy simulations and physics-informed space-time decomposition Small Modular AUV Based on 3D Printing Technology: Design, Implementation and Experimental Validation Analysis of damage to ship personnel in different seated postures by near-field underwater explosions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1