壳聚糖/碳纳米管改性材料增强粘结剂性能的研究

IF 5.5 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Carbon Letters Pub Date : 2023-07-03 DOI:10.1007/s42823-023-00564-6
Tingyu Tian, Yuping Cai, Shimao Yang, Yanwei Guo, Wei Zhou
{"title":"壳聚糖/碳纳米管改性材料增强粘结剂性能的研究","authors":"Tingyu Tian,&nbsp;Yuping Cai,&nbsp;Shimao Yang,&nbsp;Yanwei Guo,&nbsp;Wei Zhou","doi":"10.1007/s42823-023-00564-6","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we successfully grafted chitosan (CS) onto multi-walled carbon nanotubes (MWCNTs) to enhance their properties and potential applications in the biomedical field. FTIR spectroscopy confirmed the successful covalent bonding of CS onto MWCNTs, indicated by the new absorption peak of the amide bond (–CONH–). Thermal analysis showed that the modified MWCNTs (MWCNT-CS) had significant weight loss around 260 °C, suggesting the decomposition of hydroxypropyl chitosan, and confirming its presence in the nanocomposite. SEM images revealed that CS grafting improved the dispersibility of MWCNTs, a property crucial for their use as nanofillers in polymers. Moreover, the micro-tensile bond strength of dentin surface increased with increasing MWCNT-CS concentrations, indicating the potential of MWCNT-CS as a pretreatment for dentin bonding. After simulated aging, the bond strength remained significantly higher for MWCNT-CS groups compared to those without pretreatment. In biocompatibility assessment using the MTT assay, MWCNT-CS showed higher cell viability than MWCNT, suggesting improved biocompatibility after CS modification. The results of this study suggest that CS-modified MWCNTs could be promising materials for applications in dentin bonding, dentin mineralization, bone scaffolding, implants, and drug delivery systems.</p></div>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"33 6","pages":"1661 - 1667"},"PeriodicalIF":5.5000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42823-023-00564-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Study on chitosan/carbon nanotubes modified materials used to enhance the performance of dental binder\",\"authors\":\"Tingyu Tian,&nbsp;Yuping Cai,&nbsp;Shimao Yang,&nbsp;Yanwei Guo,&nbsp;Wei Zhou\",\"doi\":\"10.1007/s42823-023-00564-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, we successfully grafted chitosan (CS) onto multi-walled carbon nanotubes (MWCNTs) to enhance their properties and potential applications in the biomedical field. FTIR spectroscopy confirmed the successful covalent bonding of CS onto MWCNTs, indicated by the new absorption peak of the amide bond (–CONH–). Thermal analysis showed that the modified MWCNTs (MWCNT-CS) had significant weight loss around 260 °C, suggesting the decomposition of hydroxypropyl chitosan, and confirming its presence in the nanocomposite. SEM images revealed that CS grafting improved the dispersibility of MWCNTs, a property crucial for their use as nanofillers in polymers. Moreover, the micro-tensile bond strength of dentin surface increased with increasing MWCNT-CS concentrations, indicating the potential of MWCNT-CS as a pretreatment for dentin bonding. After simulated aging, the bond strength remained significantly higher for MWCNT-CS groups compared to those without pretreatment. In biocompatibility assessment using the MTT assay, MWCNT-CS showed higher cell viability than MWCNT, suggesting improved biocompatibility after CS modification. The results of this study suggest that CS-modified MWCNTs could be promising materials for applications in dentin bonding, dentin mineralization, bone scaffolding, implants, and drug delivery systems.</p></div>\",\"PeriodicalId\":506,\"journal\":{\"name\":\"Carbon Letters\",\"volume\":\"33 6\",\"pages\":\"1661 - 1667\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2023-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s42823-023-00564-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42823-023-00564-6\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42823-023-00564-6","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们成功地将壳聚糖(CS)接枝到多壁碳纳米管(MWCNTs)上,以提高其性能和在生物医学领域的潜在应用。通过酰胺键(- conh -)的新吸收峰,FTIR光谱证实了CS与MWCNTs之间成功的共价键。热分析表明,改性后的MWCNTs (MWCNT-CS)在260℃左右失重显著,表明羟丙基壳聚糖发生了分解,证实了其存在于纳米复合材料中。SEM图像显示,CS接枝提高了MWCNTs的分散性,这是它们作为聚合物纳米填料的关键性质。此外,随着MWCNT-CS浓度的增加,牙本质表面的微拉伸键合强度增加,表明MWCNT-CS作为牙本质键合预处理的潜力。模拟老化后,MWCNT-CS组的粘结强度明显高于未预处理组。在MTT法的生物相容性评估中,MWCNT-CS比MWCNT表现出更高的细胞活力,表明CS修饰后的生物相容性得到改善。本研究结果表明,cs修饰的MWCNTs可能是应用于牙本质粘合、牙本质矿化、骨支架、植入物和药物输送系统的有前途的材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study on chitosan/carbon nanotubes modified materials used to enhance the performance of dental binder

In this study, we successfully grafted chitosan (CS) onto multi-walled carbon nanotubes (MWCNTs) to enhance their properties and potential applications in the biomedical field. FTIR spectroscopy confirmed the successful covalent bonding of CS onto MWCNTs, indicated by the new absorption peak of the amide bond (–CONH–). Thermal analysis showed that the modified MWCNTs (MWCNT-CS) had significant weight loss around 260 °C, suggesting the decomposition of hydroxypropyl chitosan, and confirming its presence in the nanocomposite. SEM images revealed that CS grafting improved the dispersibility of MWCNTs, a property crucial for their use as nanofillers in polymers. Moreover, the micro-tensile bond strength of dentin surface increased with increasing MWCNT-CS concentrations, indicating the potential of MWCNT-CS as a pretreatment for dentin bonding. After simulated aging, the bond strength remained significantly higher for MWCNT-CS groups compared to those without pretreatment. In biocompatibility assessment using the MTT assay, MWCNT-CS showed higher cell viability than MWCNT, suggesting improved biocompatibility after CS modification. The results of this study suggest that CS-modified MWCNTs could be promising materials for applications in dentin bonding, dentin mineralization, bone scaffolding, implants, and drug delivery systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbon Letters
Carbon Letters CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
7.30
自引率
20.00%
发文量
118
期刊介绍: Carbon Letters aims to be a comprehensive journal with complete coverage of carbon materials and carbon-rich molecules. These materials range from, but are not limited to, diamond and graphite through chars, semicokes, mesophase substances, carbon fibers, carbon nanotubes, graphenes, carbon blacks, activated carbons, pyrolytic carbons, glass-like carbons, etc. Papers on the secondary production of new carbon and composite materials from the above mentioned various carbons are within the scope of the journal. Papers on organic substances, including coals, will be considered only if the research has close relation to the resulting carbon materials. Carbon Letters also seeks to keep abreast of new developments in their specialist fields and to unite in finding alternative energy solutions to current issues such as the greenhouse effect and the depletion of the ozone layer. The renewable energy basics, energy storage and conversion, solar energy, wind energy, water energy, nuclear energy, biomass energy, hydrogen production technology, and other clean energy technologies are also within the scope of the journal. Carbon Letters invites original reports of fundamental research in all branches of the theory and practice of carbon science and technology.
期刊最新文献
Investigating structural disparities in carbon nanoribbons and nanobelts through spectroscopies Research progress of carbon nanotubes as anode materials for lithium-ion batteries: a mini review Carbon nanomaterials: a promising avenue in colorectal cancer treatment Chemical dissolution of oxide layer on carbon steel SA 106 GR.B-based oxalic acid Optimization of the TiO2 content and location in core–shell tubular carbon nanofibers to improve the photocatalytic activity under visible light irradiation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1