Binsi M. Paulson, Thomas K. Joby, V. P. Raphael, K. S. Shaju
{"title":"十二烷基硫酸钠预防混凝土中钢筋腐蚀的电化学和重量分析研究","authors":"Binsi M. Paulson, Thomas K. Joby, V. P. Raphael, K. S. Shaju","doi":"10.1155/2018/9471694","DOIUrl":null,"url":null,"abstract":"Prolonged corrosion inhibition response of sodium lauryl sulphate (SLS) on steel reinforcement in contaminated concrete was investigated by gravimetric method and electrochemical techniques such as potentiodynamic polarization and electrochemical impedance spectroscopy. Using half cell potential measurements probability of steel reinforcement corrosion was monitored for a period of 480 days. FT-IR spectroscopic analysis of the corroded products deposited on the steel reinforcement revealed the mechanism of corrosion inhibition. Modification in the surface morphology of steel specimens in the concrete was examined by optical microscopy. During the period of investigation (480 days), SLS showed appreciable corrosion inhibition efficiency on the steel reinforcement in concrete.","PeriodicalId":13893,"journal":{"name":"International Journal of Corrosion","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2018-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/9471694","citationCount":"3","resultStr":"{\"title\":\"Prevention of Reinforcement Corrosion in Concrete by Sodium Lauryl Sulphate: Electrochemical and Gravimetric Investigations\",\"authors\":\"Binsi M. Paulson, Thomas K. Joby, V. P. Raphael, K. S. Shaju\",\"doi\":\"10.1155/2018/9471694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Prolonged corrosion inhibition response of sodium lauryl sulphate (SLS) on steel reinforcement in contaminated concrete was investigated by gravimetric method and electrochemical techniques such as potentiodynamic polarization and electrochemical impedance spectroscopy. Using half cell potential measurements probability of steel reinforcement corrosion was monitored for a period of 480 days. FT-IR spectroscopic analysis of the corroded products deposited on the steel reinforcement revealed the mechanism of corrosion inhibition. Modification in the surface morphology of steel specimens in the concrete was examined by optical microscopy. During the period of investigation (480 days), SLS showed appreciable corrosion inhibition efficiency on the steel reinforcement in concrete.\",\"PeriodicalId\":13893,\"journal\":{\"name\":\"International Journal of Corrosion\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2018-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2018/9471694\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Corrosion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2018/9471694\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Corrosion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2018/9471694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Prevention of Reinforcement Corrosion in Concrete by Sodium Lauryl Sulphate: Electrochemical and Gravimetric Investigations
Prolonged corrosion inhibition response of sodium lauryl sulphate (SLS) on steel reinforcement in contaminated concrete was investigated by gravimetric method and electrochemical techniques such as potentiodynamic polarization and electrochemical impedance spectroscopy. Using half cell potential measurements probability of steel reinforcement corrosion was monitored for a period of 480 days. FT-IR spectroscopic analysis of the corroded products deposited on the steel reinforcement revealed the mechanism of corrosion inhibition. Modification in the surface morphology of steel specimens in the concrete was examined by optical microscopy. During the period of investigation (480 days), SLS showed appreciable corrosion inhibition efficiency on the steel reinforcement in concrete.