利用基于vco的EPR芯片探测器实现单细胞脉冲EPR

IF 0.8 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Frequenz Pub Date : 2022-09-16 DOI:10.1515/freq-2022-0096
Mohamed Atef Hassan, M. Kern, Anh Chu, Gatik Kalra, E. Shabratova, Aleksei Tsarapkin, Neil MacKinnon, K. Lips, C. Teutloff, R. Bittl, J. Korvink, J. Anders
{"title":"利用基于vco的EPR芯片探测器实现单细胞脉冲EPR","authors":"Mohamed Atef Hassan, M. Kern, Anh Chu, Gatik Kalra, E. Shabratova, Aleksei Tsarapkin, Neil MacKinnon, K. Lips, C. Teutloff, R. Bittl, J. Korvink, J. Anders","doi":"10.1515/freq-2022-0096","DOIUrl":null,"url":null,"abstract":"Abstract Electron paramagnetic resonance (EPR) is the gold standard for studying paramagnetic species. As an example, in structural biology, it allows to extract information about distance distributions on the nanometer scale via site-directed spin labeling. Conventional pulsed EPR of biological samples is currently limited to relatively large sample concentrations and cryogenic temperatures, mainly due to low sensitivity and the significant dead time associated with conventional resonator-based EPR setups, essentially precluding in-cell EPR under physiological conditions. This paper presents our latest progress toward single-cell pulsed EPR using VCO-based EPR-on-a-chip (EPRoC) sensors. Together with an analytical model for VCO-based pulsed EPR, we present an experimental scheme to perform dead-time-free pulsed EPR measurements using EPRoC detectors. The proposed scheme is validated using extensive numerical simulations and proof-of-concept experiments on the spin dynamics of an organic radical at room temperature using a custom-designed EPRoC detector operating in the Ka-band around 30.4 GHz. Additionally, we discuss methods to improve the excitation field homogeneity and sample handling through chip post-processing and custom-designed microfluidics. Finally, we present our progress towards compact, portable pulsed EPR spectrometers incorporating EPRoC detectors, microfluidics, and custom-designed permanent magnets. Such portable EPR spectrometers can pave the way toward new EPR applications, including point-of-care diagnostics.","PeriodicalId":55143,"journal":{"name":"Frequenz","volume":"76 1","pages":"699 - 717"},"PeriodicalIF":0.8000,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Towards single-cell pulsed EPR using VCO-based EPR-on-a-chip detectors\",\"authors\":\"Mohamed Atef Hassan, M. Kern, Anh Chu, Gatik Kalra, E. Shabratova, Aleksei Tsarapkin, Neil MacKinnon, K. Lips, C. Teutloff, R. Bittl, J. Korvink, J. Anders\",\"doi\":\"10.1515/freq-2022-0096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Electron paramagnetic resonance (EPR) is the gold standard for studying paramagnetic species. As an example, in structural biology, it allows to extract information about distance distributions on the nanometer scale via site-directed spin labeling. Conventional pulsed EPR of biological samples is currently limited to relatively large sample concentrations and cryogenic temperatures, mainly due to low sensitivity and the significant dead time associated with conventional resonator-based EPR setups, essentially precluding in-cell EPR under physiological conditions. This paper presents our latest progress toward single-cell pulsed EPR using VCO-based EPR-on-a-chip (EPRoC) sensors. Together with an analytical model for VCO-based pulsed EPR, we present an experimental scheme to perform dead-time-free pulsed EPR measurements using EPRoC detectors. The proposed scheme is validated using extensive numerical simulations and proof-of-concept experiments on the spin dynamics of an organic radical at room temperature using a custom-designed EPRoC detector operating in the Ka-band around 30.4 GHz. Additionally, we discuss methods to improve the excitation field homogeneity and sample handling through chip post-processing and custom-designed microfluidics. Finally, we present our progress towards compact, portable pulsed EPR spectrometers incorporating EPRoC detectors, microfluidics, and custom-designed permanent magnets. Such portable EPR spectrometers can pave the way toward new EPR applications, including point-of-care diagnostics.\",\"PeriodicalId\":55143,\"journal\":{\"name\":\"Frequenz\",\"volume\":\"76 1\",\"pages\":\"699 - 717\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frequenz\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/freq-2022-0096\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frequenz","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/freq-2022-0096","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2

摘要

摘要电子顺磁共振(EPR)是研究顺磁性物质的金标准。例如,在结构生物学中,它允许通过定点自旋标记提取纳米尺度上的距离分布信息。生物样品的常规脉冲EPR目前仅限于相对较大的样品浓度和低温,这主要是由于与基于常规谐振器的EPR设置相关的低灵敏度和显著的死区时间,基本上排除了生理条件下的细胞内EPR。本文介绍了我们使用基于VCO的EPR-on-a-chip(EPRoC)传感器实现单电池脉冲EPR的最新进展。结合基于VCO的脉冲EPR的分析模型,我们提出了一种使用EPRoC探测器进行无死区时间脉冲EPR测量的实验方案。使用定制设计的EPRoC探测器,在30.4GHz左右的Ka波段工作,在室温下对有机自由基的自旋动力学进行了广泛的数值模拟和概念验证实验,验证了所提出的方案。此外,我们还讨论了通过芯片后处理和定制设计的微流体来提高激发场均匀性和样品处理的方法。最后,我们介绍了我们在小型便携式脉冲EPR光谱仪方面的进展,该光谱仪包含EPRoC检测器、微流体和定制设计的永磁体。这种便携式EPR光谱仪可以为新的EPR应用铺平道路,包括护理点诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards single-cell pulsed EPR using VCO-based EPR-on-a-chip detectors
Abstract Electron paramagnetic resonance (EPR) is the gold standard for studying paramagnetic species. As an example, in structural biology, it allows to extract information about distance distributions on the nanometer scale via site-directed spin labeling. Conventional pulsed EPR of biological samples is currently limited to relatively large sample concentrations and cryogenic temperatures, mainly due to low sensitivity and the significant dead time associated with conventional resonator-based EPR setups, essentially precluding in-cell EPR under physiological conditions. This paper presents our latest progress toward single-cell pulsed EPR using VCO-based EPR-on-a-chip (EPRoC) sensors. Together with an analytical model for VCO-based pulsed EPR, we present an experimental scheme to perform dead-time-free pulsed EPR measurements using EPRoC detectors. The proposed scheme is validated using extensive numerical simulations and proof-of-concept experiments on the spin dynamics of an organic radical at room temperature using a custom-designed EPRoC detector operating in the Ka-band around 30.4 GHz. Additionally, we discuss methods to improve the excitation field homogeneity and sample handling through chip post-processing and custom-designed microfluidics. Finally, we present our progress towards compact, portable pulsed EPR spectrometers incorporating EPRoC detectors, microfluidics, and custom-designed permanent magnets. Such portable EPR spectrometers can pave the way toward new EPR applications, including point-of-care diagnostics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frequenz
Frequenz 工程技术-工程:电子与电气
CiteScore
2.40
自引率
18.20%
发文量
81
审稿时长
3 months
期刊介绍: Frequenz is one of the leading scientific and technological journals covering all aspects of RF-, Microwave-, and THz-Engineering. It is a peer-reviewed, bi-monthly published journal. Frequenz was first published in 1947 with a circulation of 7000 copies, focusing on telecommunications. Today, the major objective of Frequenz is to highlight current research activities and development efforts in RF-, Microwave-, and THz-Engineering throughout a wide frequency spectrum ranging from radio via microwave up to THz frequencies. RF-, Microwave-, and THz-Engineering is a very active area of Research & Development as well as of Applications in a wide variety of fields. It has been the key to enabling technologies responsible for phenomenal growth of satellite broadcasting, wireless communications, satellite and terrestrial mobile communications and navigation, high-speed THz communication systems. It will open up new technologies in communications, radar, remote sensing and imaging, in identification and localization as well as in sensors, e.g. for wireless industrial process and environmental monitoring as well as for biomedical sensing.
期刊最新文献
A wideband folded reflectarray antenna with a 3-D printed circularly polarized converter High-selectivity wideband bandpass filter based on quintuple-mode stub-loaded resonator and defected ground structures Wideband circularly polarized reconfigurable metasurface antenna for 5G applications Designing an ultra-wideband directional antipodal Vivaldi antenna with U-slots for biomedical applications using an optimized attention network An AMC-based low-RCS conformal phased array design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1