包含分数阶拉普拉斯式的抛物方程的蒙特卡罗方法

IF 0.8 Q3 STATISTICS & PROBABILITY Monte Carlo Methods and Applications Pub Date : 2022-10-27 DOI:10.1515/mcma-2022-2129
Caiyu Jiao, Changpin Li
{"title":"包含分数阶拉普拉斯式的抛物方程的蒙特卡罗方法","authors":"Caiyu Jiao, Changpin Li","doi":"10.1515/mcma-2022-2129","DOIUrl":null,"url":null,"abstract":"Abstract We apply the Monte Carlo method to solving the Dirichlet problem of linear parabolic equations with fractional Laplacian. This method exploits the idea of weak approximation of related stochastic differential equations driven by the symmetric stable Lévy process with jumps. We utilize the jump-adapted scheme to approximate Lévy process which gives exact exit time to the boundary. When the solution has low regularity, we establish a numerical scheme by removing the small jumps of the Lévy process and then show the convergence order. When the solution has higher regularity, we build up a higher-order numerical scheme by replacing small jumps with a simple process and then display the higher convergence order. Finally, numerical experiments including ten- and one hundred-dimensional cases are presented, which confirm the theoretical estimates and show the numerical efficiency of the proposed schemes for high-dimensional parabolic equations.","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monte Carlo method for parabolic equations involving fractional Laplacian\",\"authors\":\"Caiyu Jiao, Changpin Li\",\"doi\":\"10.1515/mcma-2022-2129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We apply the Monte Carlo method to solving the Dirichlet problem of linear parabolic equations with fractional Laplacian. This method exploits the idea of weak approximation of related stochastic differential equations driven by the symmetric stable Lévy process with jumps. We utilize the jump-adapted scheme to approximate Lévy process which gives exact exit time to the boundary. When the solution has low regularity, we establish a numerical scheme by removing the small jumps of the Lévy process and then show the convergence order. When the solution has higher regularity, we build up a higher-order numerical scheme by replacing small jumps with a simple process and then display the higher convergence order. Finally, numerical experiments including ten- and one hundred-dimensional cases are presented, which confirm the theoretical estimates and show the numerical efficiency of the proposed schemes for high-dimensional parabolic equations.\",\"PeriodicalId\":46576,\"journal\":{\"name\":\"Monte Carlo Methods and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monte Carlo Methods and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/mcma-2022-2129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monte Carlo Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mcma-2022-2129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

摘要应用蒙特卡罗方法求解了具有分数阶拉普拉斯式的线性抛物型方程的Dirichlet问题。该方法利用了由具有跳跃的对称稳定lsamvy过程驱动的相关随机微分方程的弱逼近思想。我们利用跳跃适应方案来近似lsamvy过程,给出了精确的边界退出时间。当解的正则性较低时,通过去掉lsamvy过程的小跳变,建立了数值格式,并给出了收敛阶。当解具有较高的正则性时,我们用一个简单的过程代替小的跳跃,建立一个高阶的数值格式,然后显示更高的收敛阶。最后,给出了十维和一百维情况下的数值实验,验证了理论估计,并证明了所提格式对高维抛物方程的数值效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Monte Carlo method for parabolic equations involving fractional Laplacian
Abstract We apply the Monte Carlo method to solving the Dirichlet problem of linear parabolic equations with fractional Laplacian. This method exploits the idea of weak approximation of related stochastic differential equations driven by the symmetric stable Lévy process with jumps. We utilize the jump-adapted scheme to approximate Lévy process which gives exact exit time to the boundary. When the solution has low regularity, we establish a numerical scheme by removing the small jumps of the Lévy process and then show the convergence order. When the solution has higher regularity, we build up a higher-order numerical scheme by replacing small jumps with a simple process and then display the higher convergence order. Finally, numerical experiments including ten- and one hundred-dimensional cases are presented, which confirm the theoretical estimates and show the numerical efficiency of the proposed schemes for high-dimensional parabolic equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Monte Carlo Methods and Applications
Monte Carlo Methods and Applications STATISTICS & PROBABILITY-
CiteScore
1.20
自引率
22.20%
发文量
31
期刊最新文献
Investigating the ecological fallacy through sampling distributions constructed from finite populations Joint application of the Monte Carlo method and computational probabilistic analysis in problems of numerical modeling with data uncertainties Choice of a constant in the expression for the error of the Monte Carlo method Estimation in shape mixtures of skew-normal linear regression models via ECM coupled with Gibbs sampling A gradient method for high-dimensional BSDEs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1