Magdalena Kosiedowska, Arkadiusz Burczak, Julia Morys, P. Borkowska, J. Kowalski
{"title":"芹菜素和山奈酚对星形孢菌素处理的间充质干细胞的细胞毒性作用","authors":"Magdalena Kosiedowska, Arkadiusz Burczak, Julia Morys, P. Borkowska, J. Kowalski","doi":"10.2478/hepo-2021-0022","DOIUrl":null,"url":null,"abstract":"Summary Introduction Flavonoids are widely distributed in the wild. They constitute a large group of compounds that have a beneficial effect on the human body. Apigenin and kaempferol, which belong to the flavone subgroup, have, inter alia, an antitumor effect. The influence of these compounds on the survival of stem cells in a toxic environment has not yet been studied. Objective The aim of the study was to evaluate the effect of selected concentrations of apigenin and kaempferol on the survival of mesenchymal stem cells (MSC) in the presence of a cell-death inducer – staurosporine. Methods Mesenchymal stem cells that were obtained from the Wharton’s jelly of umbilical cords were used for the research. In the first stage, the MSC were treated with apigenin at concentrations of 1.2, 12.5, 25, 50 and 100 µM/ml and kaempferol at concentrations of 1.2, 12.5, 25, 50 and 100 µM/ml. In the next stage, the effect of increased concentrations of 0.1, 0.5 and 1 µM/ml of staurosporine on MSC was examined. The key stage of the experiment was investigating the interaction between the selected concentrations of apigenin (12.5 and 50 µM/ml) and kaempferol (12.5 and µM/ml) on MSC in the presence of staurosporine at a concentration of 1 µM/ml, which had the highest toxicity. Results Both apigenin and kaempferol significantly increased the cytotoxic features of staurosporine on the MSC culture.","PeriodicalId":12990,"journal":{"name":"Herba Polonica","volume":"67 1","pages":"10 - 15"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cytotoxic roles of apigenin and kaempferol on staurosporine-treated mesenchymal stem cells in an in vitro culture\",\"authors\":\"Magdalena Kosiedowska, Arkadiusz Burczak, Julia Morys, P. Borkowska, J. Kowalski\",\"doi\":\"10.2478/hepo-2021-0022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary Introduction Flavonoids are widely distributed in the wild. They constitute a large group of compounds that have a beneficial effect on the human body. Apigenin and kaempferol, which belong to the flavone subgroup, have, inter alia, an antitumor effect. The influence of these compounds on the survival of stem cells in a toxic environment has not yet been studied. Objective The aim of the study was to evaluate the effect of selected concentrations of apigenin and kaempferol on the survival of mesenchymal stem cells (MSC) in the presence of a cell-death inducer – staurosporine. Methods Mesenchymal stem cells that were obtained from the Wharton’s jelly of umbilical cords were used for the research. In the first stage, the MSC were treated with apigenin at concentrations of 1.2, 12.5, 25, 50 and 100 µM/ml and kaempferol at concentrations of 1.2, 12.5, 25, 50 and 100 µM/ml. In the next stage, the effect of increased concentrations of 0.1, 0.5 and 1 µM/ml of staurosporine on MSC was examined. The key stage of the experiment was investigating the interaction between the selected concentrations of apigenin (12.5 and 50 µM/ml) and kaempferol (12.5 and µM/ml) on MSC in the presence of staurosporine at a concentration of 1 µM/ml, which had the highest toxicity. Results Both apigenin and kaempferol significantly increased the cytotoxic features of staurosporine on the MSC culture.\",\"PeriodicalId\":12990,\"journal\":{\"name\":\"Herba Polonica\",\"volume\":\"67 1\",\"pages\":\"10 - 15\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Herba Polonica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/hepo-2021-0022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Herba Polonica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/hepo-2021-0022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
Cytotoxic roles of apigenin and kaempferol on staurosporine-treated mesenchymal stem cells in an in vitro culture
Summary Introduction Flavonoids are widely distributed in the wild. They constitute a large group of compounds that have a beneficial effect on the human body. Apigenin and kaempferol, which belong to the flavone subgroup, have, inter alia, an antitumor effect. The influence of these compounds on the survival of stem cells in a toxic environment has not yet been studied. Objective The aim of the study was to evaluate the effect of selected concentrations of apigenin and kaempferol on the survival of mesenchymal stem cells (MSC) in the presence of a cell-death inducer – staurosporine. Methods Mesenchymal stem cells that were obtained from the Wharton’s jelly of umbilical cords were used for the research. In the first stage, the MSC were treated with apigenin at concentrations of 1.2, 12.5, 25, 50 and 100 µM/ml and kaempferol at concentrations of 1.2, 12.5, 25, 50 and 100 µM/ml. In the next stage, the effect of increased concentrations of 0.1, 0.5 and 1 µM/ml of staurosporine on MSC was examined. The key stage of the experiment was investigating the interaction between the selected concentrations of apigenin (12.5 and 50 µM/ml) and kaempferol (12.5 and µM/ml) on MSC in the presence of staurosporine at a concentration of 1 µM/ml, which had the highest toxicity. Results Both apigenin and kaempferol significantly increased the cytotoxic features of staurosporine on the MSC culture.