可生物降解的Zn–Sr合金,具有增强的机械性能和生物相容性,用于生物医学应用

Q1 Engineering Smart Materials in Medicine Pub Date : 2022-01-01 DOI:10.1016/j.smaim.2021.12.004
Yingchao Su , Jiayin Fu , Shaokang Du , Elias Georgas , Yi-Xian Qin , Yufeng Zheng , Yadong Wang , Donghui Zhu
{"title":"可生物降解的Zn–Sr合金,具有增强的机械性能和生物相容性,用于生物医学应用","authors":"Yingchao Su ,&nbsp;Jiayin Fu ,&nbsp;Shaokang Du ,&nbsp;Elias Georgas ,&nbsp;Yi-Xian Qin ,&nbsp;Yufeng Zheng ,&nbsp;Yadong Wang ,&nbsp;Donghui Zhu","doi":"10.1016/j.smaim.2021.12.004","DOIUrl":null,"url":null,"abstract":"<div><p>Zinc (Zn) is a new generation of biodegradable metal as temporary biomedical implants with a promising degradation rate. However, its clinical applications have been limited because of the insufficient mechanical properties. Considering the degradation property and biocompatibility, we proposed Zn–Sr alloys after extrusion treatments to simultaneously improve the mechanical strength and ductility. The <em>in vitro</em> and <em>in vivo</em> degradation and biocompatibility were also evaluated using electrochemical and immersion corrosion tests, various cell and bacterial models, together with subcutaneous and femoral implantations in rats. Results showed that the extruded Zn-0.7Sr alloys exhibited two times higher mechanical strengths (∼120 ​MPa) and better ductility (∼10%) than the pure Zn counterparts. The Zn–Sr alloys provided enhanced <em>in vitro</em> and <em>in vivo</em> biocompatibility along with promising antibacterial properties.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590183421000454/pdfft?md5=ce592af6840a7174c8f4d7fdce36165e&pid=1-s2.0-S2590183421000454-main.pdf","citationCount":"8","resultStr":"{\"title\":\"Biodegradable Zn–Sr alloys with enhanced mechanical and biocompatibility for biomedical applications\",\"authors\":\"Yingchao Su ,&nbsp;Jiayin Fu ,&nbsp;Shaokang Du ,&nbsp;Elias Georgas ,&nbsp;Yi-Xian Qin ,&nbsp;Yufeng Zheng ,&nbsp;Yadong Wang ,&nbsp;Donghui Zhu\",\"doi\":\"10.1016/j.smaim.2021.12.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Zinc (Zn) is a new generation of biodegradable metal as temporary biomedical implants with a promising degradation rate. However, its clinical applications have been limited because of the insufficient mechanical properties. Considering the degradation property and biocompatibility, we proposed Zn–Sr alloys after extrusion treatments to simultaneously improve the mechanical strength and ductility. The <em>in vitro</em> and <em>in vivo</em> degradation and biocompatibility were also evaluated using electrochemical and immersion corrosion tests, various cell and bacterial models, together with subcutaneous and femoral implantations in rats. Results showed that the extruded Zn-0.7Sr alloys exhibited two times higher mechanical strengths (∼120 ​MPa) and better ductility (∼10%) than the pure Zn counterparts. The Zn–Sr alloys provided enhanced <em>in vitro</em> and <em>in vivo</em> biocompatibility along with promising antibacterial properties.</p></div>\",\"PeriodicalId\":22019,\"journal\":{\"name\":\"Smart Materials in Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590183421000454/pdfft?md5=ce592af6840a7174c8f4d7fdce36165e&pid=1-s2.0-S2590183421000454-main.pdf\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart Materials in Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590183421000454\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590183421000454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 8

摘要

锌(Zn)是新一代生物可降解金属,是一种具有良好降解性能的生物医用临时植入物。然而,由于其力学性能不足,其临床应用受到限制。考虑到锌锶合金的降解性能和生物相容性,我们提出了经过挤压处理的锌锶合金,以同时提高机械强度和塑性。通过电化学和浸没腐蚀试验、各种细胞和细菌模型以及大鼠皮下和股骨植入,评估了其体外和体内降解和生物相容性。结果表明,挤压Zn-0.7 sr合金的力学强度(~ 120mpa)和延展性(~ 10%)均比纯Zn合金高2倍。锌锶合金具有较好的体内外生物相容性和良好的抗菌性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Biodegradable Zn–Sr alloys with enhanced mechanical and biocompatibility for biomedical applications

Zinc (Zn) is a new generation of biodegradable metal as temporary biomedical implants with a promising degradation rate. However, its clinical applications have been limited because of the insufficient mechanical properties. Considering the degradation property and biocompatibility, we proposed Zn–Sr alloys after extrusion treatments to simultaneously improve the mechanical strength and ductility. The in vitro and in vivo degradation and biocompatibility were also evaluated using electrochemical and immersion corrosion tests, various cell and bacterial models, together with subcutaneous and femoral implantations in rats. Results showed that the extruded Zn-0.7Sr alloys exhibited two times higher mechanical strengths (∼120 ​MPa) and better ductility (∼10%) than the pure Zn counterparts. The Zn–Sr alloys provided enhanced in vitro and in vivo biocompatibility along with promising antibacterial properties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Smart Materials in Medicine
Smart Materials in Medicine Engineering-Biomedical Engineering
CiteScore
14.00
自引率
0.00%
发文量
41
审稿时长
48 days
期刊最新文献
Externally triggered drug delivery systems Advances of surface modification to alleviate oxidative stress-induced valve degeneration The state-of-the-art therapeutic paradigms against sepsis Magnesium-based bioceramic-enhanced composites fabricated via friction stir processing Mitochondrial targeted prodrug nanoparticles for chemo-photodynamic combinational tumour therapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1