部署机器人积极心理学教练提高大学生心理健康水平

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, CYBERNETICS User Modeling and User-Adapted Interaction Pub Date : 2023-04-01 Epub Date: 2022-07-11 DOI:10.1007/s11257-022-09337-8
Sooyeon Jeong, Laura Aymerich-Franch, Kika Arias, Sharifa Alghowinem, Agata Lapedriza, Rosalind Picard, Hae Won Park, Cynthia Breazeal
{"title":"部署机器人积极心理学教练提高大学生心理健康水平","authors":"Sooyeon Jeong, Laura Aymerich-Franch, Kika Arias, Sharifa Alghowinem, Agata Lapedriza, Rosalind Picard, Hae Won Park, Cynthia Breazeal","doi":"10.1007/s11257-022-09337-8","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the increase in awareness and support for mental health, college students' mental health is reported to decline every year in many countries. Several interactive technologies for mental health have been proposed and are aiming to make therapeutic service more accessible, but most of them only provide one-way passive contents for their users, such as psycho-education, health monitoring, and clinical assessment. We present a robotic coach that not only delivers interactive positive psychology interventions but also provides other useful skills to build rapport with college students. Results from our on-campus housing deployment feasibility study showed that the robotic intervention showed significant association with increases in students' psychological well-being, mood, and motivation to change. We further found that students' personality traits were associated with the intervention outcomes as well as their working alliance with the robot and their satisfaction with the interventions. Also, students' working alliance with the robot was shown to be associated with their pre-to-post change in motivation for better well-being. Analyses on students' behavioral cues showed that several verbal and nonverbal behaviors were associated with the change in self-reported intervention outcomes. The qualitative analyses on the post-study interview suggest that the robotic coach's companionship made a positive impression on students, but also revealed areas for improvement in the design of the robotic coach. Results from our feasibility study give insight into how learning users' traits and recognizing behavioral cues can help an AI agent provide personalized intervention experiences for better mental health outcomes.</p>","PeriodicalId":49388,"journal":{"name":"User Modeling and User-Adapted Interaction","volume":"33 1","pages":"571-615"},"PeriodicalIF":3.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11086679/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deploying a robotic positive psychology coach to improve college students' psychological well-being.\",\"authors\":\"Sooyeon Jeong, Laura Aymerich-Franch, Kika Arias, Sharifa Alghowinem, Agata Lapedriza, Rosalind Picard, Hae Won Park, Cynthia Breazeal\",\"doi\":\"10.1007/s11257-022-09337-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Despite the increase in awareness and support for mental health, college students' mental health is reported to decline every year in many countries. Several interactive technologies for mental health have been proposed and are aiming to make therapeutic service more accessible, but most of them only provide one-way passive contents for their users, such as psycho-education, health monitoring, and clinical assessment. We present a robotic coach that not only delivers interactive positive psychology interventions but also provides other useful skills to build rapport with college students. Results from our on-campus housing deployment feasibility study showed that the robotic intervention showed significant association with increases in students' psychological well-being, mood, and motivation to change. We further found that students' personality traits were associated with the intervention outcomes as well as their working alliance with the robot and their satisfaction with the interventions. Also, students' working alliance with the robot was shown to be associated with their pre-to-post change in motivation for better well-being. Analyses on students' behavioral cues showed that several verbal and nonverbal behaviors were associated with the change in self-reported intervention outcomes. The qualitative analyses on the post-study interview suggest that the robotic coach's companionship made a positive impression on students, but also revealed areas for improvement in the design of the robotic coach. Results from our feasibility study give insight into how learning users' traits and recognizing behavioral cues can help an AI agent provide personalized intervention experiences for better mental health outcomes.</p>\",\"PeriodicalId\":49388,\"journal\":{\"name\":\"User Modeling and User-Adapted Interaction\",\"volume\":\"33 1\",\"pages\":\"571-615\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11086679/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"User Modeling and User-Adapted Interaction\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11257-022-09337-8\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/7/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"User Modeling and User-Adapted Interaction","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11257-022-09337-8","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/11 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0

摘要

尽管人们对心理健康的认识和支持不断提高,但在许多国家,大学生的心理健康状况却逐年下降。目前已经提出了几种心理健康互动技术,旨在使治疗服务更容易获得,但大多数技术只能为用户提供单向的被动内容,如心理教育、健康监测和临床评估。我们介绍的机器人教练不仅能提供互动式积极心理学干预,还能提供其他有用的技能,与大学生建立融洽的关系。我们在校园宿舍部署的可行性研究结果表明,机器人干预与学生心理健康、情绪和改变动机的提高有显著关联。我们还发现,学生的个性特征与干预结果、他们与机器人的工作联盟以及他们对干预的满意度都有关联。此外,学生与机器人之间的合作关系还与他们在改善健康状况的动机方面的前后变化有关。对学生行为线索的分析表明,一些语言和非语言行为与自我报告的干预结果的变化有关。对研究后访谈的定性分析表明,机器人教练的陪伴给学生留下了积极的印象,但也揭示了机器人教练设计中需要改进的地方。我们的可行性研究结果让我们深入了解了学习用户特征和识别行为线索如何帮助人工智能代理提供个性化的干预体验,从而获得更好的心理健康效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deploying a robotic positive psychology coach to improve college students' psychological well-being.

Despite the increase in awareness and support for mental health, college students' mental health is reported to decline every year in many countries. Several interactive technologies for mental health have been proposed and are aiming to make therapeutic service more accessible, but most of them only provide one-way passive contents for their users, such as psycho-education, health monitoring, and clinical assessment. We present a robotic coach that not only delivers interactive positive psychology interventions but also provides other useful skills to build rapport with college students. Results from our on-campus housing deployment feasibility study showed that the robotic intervention showed significant association with increases in students' psychological well-being, mood, and motivation to change. We further found that students' personality traits were associated with the intervention outcomes as well as their working alliance with the robot and their satisfaction with the interventions. Also, students' working alliance with the robot was shown to be associated with their pre-to-post change in motivation for better well-being. Analyses on students' behavioral cues showed that several verbal and nonverbal behaviors were associated with the change in self-reported intervention outcomes. The qualitative analyses on the post-study interview suggest that the robotic coach's companionship made a positive impression on students, but also revealed areas for improvement in the design of the robotic coach. Results from our feasibility study give insight into how learning users' traits and recognizing behavioral cues can help an AI agent provide personalized intervention experiences for better mental health outcomes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
User Modeling and User-Adapted Interaction
User Modeling and User-Adapted Interaction 工程技术-计算机:控制论
CiteScore
8.90
自引率
8.30%
发文量
35
审稿时长
>12 weeks
期刊介绍: User Modeling and User-Adapted Interaction provides an interdisciplinary forum for the dissemination of novel and significant original research results about interactive computer systems that can adapt themselves to their users, and on the design, use, and evaluation of user models for adaptation. The journal publishes high-quality original papers from, e.g., the following areas: acquisition and formal representation of user models; conceptual models and user stereotypes for personalization; student modeling and adaptive learning; models of groups of users; user model driven personalised information discovery and retrieval; recommender systems; adaptive user interfaces and agents; adaptation for accessibility and inclusion; generic user modeling systems and tools; interoperability of user models; personalization in areas such as; affective computing; ubiquitous and mobile computing; language based interactions; multi-modal interactions; virtual and augmented reality; social media and the Web; human-robot interaction; behaviour change interventions; personalized applications in specific domains; privacy, accountability, and security of information for personalization; responsible adaptation: fairness, accountability, explainability, transparency and control; methods for the design and evaluation of user models and adaptive systems
期刊最新文献
Hybrid music recommendation with graph neural networks AdaptUI: A Framework for the development of Adaptive User Interfaces in Smart Product-Service Systems Examining the merits of feature-specific similarity functions in the news domain using human judgments SNRBERT: session-based news recommender using BERT A deep neural network approach for fake news detection using linguistic and psychological features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1