M. Alqahtani, F. Alqahtani, A. Almarhaby, K. I. Hussain, Y. Khalid, H. Almohiy, I. Yaha, E. Yousef
{"title":"结构和性能辐射防护磷酸盐玻璃含有:掺杂稀土的Te、K、Al、Nb","authors":"M. Alqahtani, F. Alqahtani, A. Almarhaby, K. I. Hussain, Y. Khalid, H. Almohiy, I. Yaha, E. Yousef","doi":"10.15251/cl.2023.201.43","DOIUrl":null,"url":null,"abstract":"Because of the increased use of ionizing radiation, radiation management and security procedures are now regarded a standard part of many therapeutic and specialist fields. The focus of this work is on the radiation security features of Novel Oxide Glass (PZBKTANEr). The unique glass assembly is 40P2O5-30ZnO- 20BaF2-3.8K2TeO3- 1.2Al2O3-5Nb2O5-3Er2O3 in mol percent (test code PZBKTANEr). For the suggested oxide glass, several radiation shielding characteristics have been investigated for a specific energy range of ionizing radiation. The linear and mass attenuation coefficients, mean free path, half-value layer, total nuclear and electronic cross-sections, and fast neutron expulsion cross-section are among the radiation shielding properties. Furthermore, the unique fabricated glass (PZBKTANEr) was compared to commonly used radiation protection compositions, such as RS-253 G18, RS-360, RS-520, Chromite, Ferrite, Magnetite, and Barite glass, as well as RS-253 G18, RS-360, RS-520, Chromite, Ferrite, Magnetite, and Barite glass. Also, we studied the structure of fabrication by using Raman spectra. The findings suggest that the new oxide glass might be used in a broad variety of ionizing radiation applications for protection in both therapeutic and industrial applications.","PeriodicalId":9710,"journal":{"name":"Chalcogenide Letters","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Structural and performance radiation protection the phosphate glasses contain: Te, K, Al, Nb-doped with rare earth\",\"authors\":\"M. Alqahtani, F. Alqahtani, A. Almarhaby, K. I. Hussain, Y. Khalid, H. Almohiy, I. Yaha, E. Yousef\",\"doi\":\"10.15251/cl.2023.201.43\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Because of the increased use of ionizing radiation, radiation management and security procedures are now regarded a standard part of many therapeutic and specialist fields. The focus of this work is on the radiation security features of Novel Oxide Glass (PZBKTANEr). The unique glass assembly is 40P2O5-30ZnO- 20BaF2-3.8K2TeO3- 1.2Al2O3-5Nb2O5-3Er2O3 in mol percent (test code PZBKTANEr). For the suggested oxide glass, several radiation shielding characteristics have been investigated for a specific energy range of ionizing radiation. The linear and mass attenuation coefficients, mean free path, half-value layer, total nuclear and electronic cross-sections, and fast neutron expulsion cross-section are among the radiation shielding properties. Furthermore, the unique fabricated glass (PZBKTANEr) was compared to commonly used radiation protection compositions, such as RS-253 G18, RS-360, RS-520, Chromite, Ferrite, Magnetite, and Barite glass, as well as RS-253 G18, RS-360, RS-520, Chromite, Ferrite, Magnetite, and Barite glass. Also, we studied the structure of fabrication by using Raman spectra. The findings suggest that the new oxide glass might be used in a broad variety of ionizing radiation applications for protection in both therapeutic and industrial applications.\",\"PeriodicalId\":9710,\"journal\":{\"name\":\"Chalcogenide Letters\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chalcogenide Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.15251/cl.2023.201.43\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chalcogenide Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.15251/cl.2023.201.43","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Structural and performance radiation protection the phosphate glasses contain: Te, K, Al, Nb-doped with rare earth
Because of the increased use of ionizing radiation, radiation management and security procedures are now regarded a standard part of many therapeutic and specialist fields. The focus of this work is on the radiation security features of Novel Oxide Glass (PZBKTANEr). The unique glass assembly is 40P2O5-30ZnO- 20BaF2-3.8K2TeO3- 1.2Al2O3-5Nb2O5-3Er2O3 in mol percent (test code PZBKTANEr). For the suggested oxide glass, several radiation shielding characteristics have been investigated for a specific energy range of ionizing radiation. The linear and mass attenuation coefficients, mean free path, half-value layer, total nuclear and electronic cross-sections, and fast neutron expulsion cross-section are among the radiation shielding properties. Furthermore, the unique fabricated glass (PZBKTANEr) was compared to commonly used radiation protection compositions, such as RS-253 G18, RS-360, RS-520, Chromite, Ferrite, Magnetite, and Barite glass, as well as RS-253 G18, RS-360, RS-520, Chromite, Ferrite, Magnetite, and Barite glass. Also, we studied the structure of fabrication by using Raman spectra. The findings suggest that the new oxide glass might be used in a broad variety of ionizing radiation applications for protection in both therapeutic and industrial applications.
期刊介绍:
Chalcogenide Letters (CHL) has the aim to publish rapidly papers in chalcogenide field of research and
appears with twelve issues per year. The journal is open to letters, short communications and breakings news
inserted as Short Notes, in the field of chalcogenide materials either amorphous or crystalline. Short papers in
structure, properties and applications, as well as those covering special properties in nano-structured
chalcogenides are admitted.