Lei Xu, Gang Zhao, Hong Zhu, Shijun Wang, A. Sun, Y. Zou, J. Ge
{"title":"过氧化物酶体增殖物激活受体-γ通过miR-590-5p的转录激活拮抗lox -1介导的内皮损伤","authors":"Lei Xu, Gang Zhao, Hong Zhu, Shijun Wang, A. Sun, Y. Zou, J. Ge","doi":"10.1155/2019/2715176","DOIUrl":null,"url":null,"abstract":"Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is one of the major receptors expressed on the endothelium of arterial wall with a key role in endothelial dysfunction and the development of atherosclerosis. Recent evidence suggested that LOX-1 is upregulated under the condition of insulin resistance and could be suppressed by the antidiabetic drugs. We previously also confirmed that Thiazolidinedione (TZD) has the inhibitory effect on LOX-1 in ox-LDL-induced endothelial cells. However, the underlying mechanism is unclear. Here we showed that Rosiglitazone treatment significantly attenuated the expressions of LOX-1, ICAM-1, VCAM-1, p47phox, and the atherosclerotic lesions in ApoE−/− mice with high-fat diet. In vitro, we revealed that Rosiglitazone inhibited LOX-1 by regulating miR-590-5p. Ox-LDL-mediated ICAM-1, VCAM-1, and p47phox were significantly reduced by Rosiglitazone, but all reversed after pretreating the cells with antagomiR-590-5p. Induction with Rosiglitazone activated PPAR-γ and promoted its nuclear translocation in cultured human umbilical vein endothelial cells (HUVECs). The nuclear PPAR-γ upregulated the miR-590-5p level through binding to its transcriptional promoter region. Retaining PPAR-γ in cytoplasm by transfecting with PPAR-γ⊿NLS plasmid in HUVECs failed to activate miR-590-5p. Mutation of the promoter region of PPAR-γ also reduced the miR-590-5p promoter luciferase activity. Collectively, these data indicated that PPAR-γ may have the therapeutic potential in atherosclerosis via the transcriptional regulation of miR-590-5p in endothelial cells.","PeriodicalId":20439,"journal":{"name":"PPAR Research","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/2715176","citationCount":"8","resultStr":"{\"title\":\"Peroxisome Proliferator-Activated Receptor-γ Antagonizes LOX-1-Mediated Endothelial Injury by Transcriptional Activation of miR-590-5p\",\"authors\":\"Lei Xu, Gang Zhao, Hong Zhu, Shijun Wang, A. Sun, Y. Zou, J. Ge\",\"doi\":\"10.1155/2019/2715176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is one of the major receptors expressed on the endothelium of arterial wall with a key role in endothelial dysfunction and the development of atherosclerosis. Recent evidence suggested that LOX-1 is upregulated under the condition of insulin resistance and could be suppressed by the antidiabetic drugs. We previously also confirmed that Thiazolidinedione (TZD) has the inhibitory effect on LOX-1 in ox-LDL-induced endothelial cells. However, the underlying mechanism is unclear. Here we showed that Rosiglitazone treatment significantly attenuated the expressions of LOX-1, ICAM-1, VCAM-1, p47phox, and the atherosclerotic lesions in ApoE−/− mice with high-fat diet. In vitro, we revealed that Rosiglitazone inhibited LOX-1 by regulating miR-590-5p. Ox-LDL-mediated ICAM-1, VCAM-1, and p47phox were significantly reduced by Rosiglitazone, but all reversed after pretreating the cells with antagomiR-590-5p. Induction with Rosiglitazone activated PPAR-γ and promoted its nuclear translocation in cultured human umbilical vein endothelial cells (HUVECs). The nuclear PPAR-γ upregulated the miR-590-5p level through binding to its transcriptional promoter region. Retaining PPAR-γ in cytoplasm by transfecting with PPAR-γ⊿NLS plasmid in HUVECs failed to activate miR-590-5p. Mutation of the promoter region of PPAR-γ also reduced the miR-590-5p promoter luciferase activity. Collectively, these data indicated that PPAR-γ may have the therapeutic potential in atherosclerosis via the transcriptional regulation of miR-590-5p in endothelial cells.\",\"PeriodicalId\":20439,\"journal\":{\"name\":\"PPAR Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2019/2715176\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PPAR Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1155/2019/2715176\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PPAR Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2019/2715176","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Peroxisome Proliferator-Activated Receptor-γ Antagonizes LOX-1-Mediated Endothelial Injury by Transcriptional Activation of miR-590-5p
Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is one of the major receptors expressed on the endothelium of arterial wall with a key role in endothelial dysfunction and the development of atherosclerosis. Recent evidence suggested that LOX-1 is upregulated under the condition of insulin resistance and could be suppressed by the antidiabetic drugs. We previously also confirmed that Thiazolidinedione (TZD) has the inhibitory effect on LOX-1 in ox-LDL-induced endothelial cells. However, the underlying mechanism is unclear. Here we showed that Rosiglitazone treatment significantly attenuated the expressions of LOX-1, ICAM-1, VCAM-1, p47phox, and the atherosclerotic lesions in ApoE−/− mice with high-fat diet. In vitro, we revealed that Rosiglitazone inhibited LOX-1 by regulating miR-590-5p. Ox-LDL-mediated ICAM-1, VCAM-1, and p47phox were significantly reduced by Rosiglitazone, but all reversed after pretreating the cells with antagomiR-590-5p. Induction with Rosiglitazone activated PPAR-γ and promoted its nuclear translocation in cultured human umbilical vein endothelial cells (HUVECs). The nuclear PPAR-γ upregulated the miR-590-5p level through binding to its transcriptional promoter region. Retaining PPAR-γ in cytoplasm by transfecting with PPAR-γ⊿NLS plasmid in HUVECs failed to activate miR-590-5p. Mutation of the promoter region of PPAR-γ also reduced the miR-590-5p promoter luciferase activity. Collectively, these data indicated that PPAR-γ may have the therapeutic potential in atherosclerosis via the transcriptional regulation of miR-590-5p in endothelial cells.
期刊介绍:
PPAR Research is a peer-reviewed, Open Access journal that publishes original research and review articles on advances in basic research focusing on mechanisms involved in the activation of peroxisome proliferator-activated receptors (PPARs), as well as their role in the regulation of cellular differentiation, development, energy homeostasis and metabolic function. The journal also welcomes preclinical and clinical trials of drugs that can modulate PPAR activity, with a view to treating chronic diseases and disorders such as dyslipidemia, diabetes, adipocyte differentiation, inflammation, cancer, lung diseases, neurodegenerative disorders, and obesity.