{"title":"跑步如何给我们克服神经系统疾病的高期望","authors":"Ven Sumedh Thero, Kataria Hb, Aditya Suman","doi":"10.47363/jnrrr/2021(3)144","DOIUrl":null,"url":null,"abstract":"Whether chasing down dinner, pushing a stroller up a hill or running errands for a neighbor, we can take joy in the effort. And the more physically active you are, the more rewarding these experiences become. One of the ways that regular exercise changes your brain is by increasing the density of binding sites for endocannabinoids. Spring-like leg behavior is a general feature of mammalian bouncing gaits, such as running and hopping. Although increases in step frequency at a given running speed are known to increase the stiffness of the leg spring (kleg) in non-amputees, little is known about stiffness regulation in unilateral transfemoral amputees. Thus Consequently, the unilateral transfemoral amputees attained the desired step frequency in the unaffected limb, but were unable to match the three highest step frequencies using their affected limbs","PeriodicalId":73862,"journal":{"name":"Journal of neurology research, reviews & reports","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"How Running Give Us a High Expectations to Overcome Neurological Disorders\",\"authors\":\"Ven Sumedh Thero, Kataria Hb, Aditya Suman\",\"doi\":\"10.47363/jnrrr/2021(3)144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Whether chasing down dinner, pushing a stroller up a hill or running errands for a neighbor, we can take joy in the effort. And the more physically active you are, the more rewarding these experiences become. One of the ways that regular exercise changes your brain is by increasing the density of binding sites for endocannabinoids. Spring-like leg behavior is a general feature of mammalian bouncing gaits, such as running and hopping. Although increases in step frequency at a given running speed are known to increase the stiffness of the leg spring (kleg) in non-amputees, little is known about stiffness regulation in unilateral transfemoral amputees. Thus Consequently, the unilateral transfemoral amputees attained the desired step frequency in the unaffected limb, but were unable to match the three highest step frequencies using their affected limbs\",\"PeriodicalId\":73862,\"journal\":{\"name\":\"Journal of neurology research, reviews & reports\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neurology research, reviews & reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47363/jnrrr/2021(3)144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neurology research, reviews & reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47363/jnrrr/2021(3)144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
How Running Give Us a High Expectations to Overcome Neurological Disorders
Whether chasing down dinner, pushing a stroller up a hill or running errands for a neighbor, we can take joy in the effort. And the more physically active you are, the more rewarding these experiences become. One of the ways that regular exercise changes your brain is by increasing the density of binding sites for endocannabinoids. Spring-like leg behavior is a general feature of mammalian bouncing gaits, such as running and hopping. Although increases in step frequency at a given running speed are known to increase the stiffness of the leg spring (kleg) in non-amputees, little is known about stiffness regulation in unilateral transfemoral amputees. Thus Consequently, the unilateral transfemoral amputees attained the desired step frequency in the unaffected limb, but were unable to match the three highest step frequencies using their affected limbs