应用稳定同位素检测模拟飞花Aegiceras湿地中氮的比例

Q3 Chemical Engineering Chemical Speciation and Bioavailability Pub Date : 2017-01-01 DOI:10.1080/09542299.2017.1339573
S. Miao, Weilin Chen, W. Tao, Wen-Hong Dai, Liandi Long, Jinling Huang
{"title":"应用稳定同位素检测模拟飞花Aegiceras湿地中氮的比例","authors":"S. Miao, Weilin Chen, W. Tao, Wen-Hong Dai, Liandi Long, Jinling Huang","doi":"10.1080/09542299.2017.1339573","DOIUrl":null,"url":null,"abstract":"Abstract Salinity levels and drought status of coastal wetlands may be strongly affected by climate change, and changes in the nitrogen cycle of mangrove wetlands may also be affected. We established combinations of three salinity and water levels with applied stable isotope 15N to study the δ15N distributions in the sediment and plants of a greenhouse-based simulated mangrove Aegiceras corniculatum wetland system. The stable isotope 13C and 15N, C and N contents and the C:N ratio were determined. Results showed that increasing in salinity significantly increased the δ13C value in plant organs. The δ15N value of plant organs increased with increasing water level in low salinity (10‰) and medium salinity (20‰) treatment groups but not in the high salinity (30‰) treatment group. This may attributed to A. corniculatum adjusting the δ15N distribution in different organs in response to high salinity stress. Compared to the δ13C, the δ15N values of plant were strongly affected by salinity and water level treatments, indicating that the behavior of N cycle was somewhat different than the C cycle, and affected by the combined effects of both salinity and water level. Most of 15N absorbed by plant tissues were in leaves except for the highest salinity and high water level treatment, showing at increasing water level, the proportion of 15N increased in root. Overall, the measured indicators exhibited different responses to salinity level and water level, suggesting that the changes in salinity and water levels have an impact on N cycling processes of wetland systems.","PeriodicalId":55264,"journal":{"name":"Chemical Speciation and Bioavailability","volume":"29 1","pages":"109 - 97"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/09542299.2017.1339573","citationCount":"4","resultStr":"{\"title\":\"Application of stable isotopes to examine N proportions within a simulated Aegiceras corniculatum wetland\",\"authors\":\"S. Miao, Weilin Chen, W. Tao, Wen-Hong Dai, Liandi Long, Jinling Huang\",\"doi\":\"10.1080/09542299.2017.1339573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Salinity levels and drought status of coastal wetlands may be strongly affected by climate change, and changes in the nitrogen cycle of mangrove wetlands may also be affected. We established combinations of three salinity and water levels with applied stable isotope 15N to study the δ15N distributions in the sediment and plants of a greenhouse-based simulated mangrove Aegiceras corniculatum wetland system. The stable isotope 13C and 15N, C and N contents and the C:N ratio were determined. Results showed that increasing in salinity significantly increased the δ13C value in plant organs. The δ15N value of plant organs increased with increasing water level in low salinity (10‰) and medium salinity (20‰) treatment groups but not in the high salinity (30‰) treatment group. This may attributed to A. corniculatum adjusting the δ15N distribution in different organs in response to high salinity stress. Compared to the δ13C, the δ15N values of plant were strongly affected by salinity and water level treatments, indicating that the behavior of N cycle was somewhat different than the C cycle, and affected by the combined effects of both salinity and water level. Most of 15N absorbed by plant tissues were in leaves except for the highest salinity and high water level treatment, showing at increasing water level, the proportion of 15N increased in root. Overall, the measured indicators exhibited different responses to salinity level and water level, suggesting that the changes in salinity and water levels have an impact on N cycling processes of wetland systems.\",\"PeriodicalId\":55264,\"journal\":{\"name\":\"Chemical Speciation and Bioavailability\",\"volume\":\"29 1\",\"pages\":\"109 - 97\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/09542299.2017.1339573\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Speciation and Bioavailability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/09542299.2017.1339573\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Speciation and Bioavailability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09542299.2017.1339573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 4

摘要

摘要沿海湿地的盐度和干旱状况可能受到气候变化的强烈影响,红树林湿地氮循环的变化也可能受到影响。我们建立了三种盐度和水位与应用稳定同位素15N的组合,以研究δ15N在基于温室的模拟红树林Aegiceras corniculatum湿地系统沉积物和植物中的分布。测定了稳定同位素13C和15N、C和N的含量以及C:N比。结果表明,盐度的增加显著提高了植物器官中δ13C的值。低盐度(10‰)和中盐度(20‰)处理组植物器官的δ15N值随水位的升高而增加,而高盐度(30‰)处理则不增加。这可能归因于A.corniculatum在高盐度胁迫下调节δ15N在不同器官中的分布。与δ13C相比,植物的δ15N值受到盐度和水位处理的强烈影响,表明N循环的行为与C循环有所不同,并受到盐度和水平的综合影响。除最高盐度和高水位处理外,植物组织吸收的15N大部分在叶片中,表明随着水位的升高,15N在根部的比例增加。总体而言,测量的指标对盐度和水位表现出不同的响应,表明盐度和水位的变化对湿地系统的氮循环过程有影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of stable isotopes to examine N proportions within a simulated Aegiceras corniculatum wetland
Abstract Salinity levels and drought status of coastal wetlands may be strongly affected by climate change, and changes in the nitrogen cycle of mangrove wetlands may also be affected. We established combinations of three salinity and water levels with applied stable isotope 15N to study the δ15N distributions in the sediment and plants of a greenhouse-based simulated mangrove Aegiceras corniculatum wetland system. The stable isotope 13C and 15N, C and N contents and the C:N ratio were determined. Results showed that increasing in salinity significantly increased the δ13C value in plant organs. The δ15N value of plant organs increased with increasing water level in low salinity (10‰) and medium salinity (20‰) treatment groups but not in the high salinity (30‰) treatment group. This may attributed to A. corniculatum adjusting the δ15N distribution in different organs in response to high salinity stress. Compared to the δ13C, the δ15N values of plant were strongly affected by salinity and water level treatments, indicating that the behavior of N cycle was somewhat different than the C cycle, and affected by the combined effects of both salinity and water level. Most of 15N absorbed by plant tissues were in leaves except for the highest salinity and high water level treatment, showing at increasing water level, the proportion of 15N increased in root. Overall, the measured indicators exhibited different responses to salinity level and water level, suggesting that the changes in salinity and water levels have an impact on N cycling processes of wetland systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.62
自引率
0.00%
发文量
0
审稿时长
1 months
期刊介绍: Chemical Speciation & Bioavailability ( CS&B) is a scholarly, peer-reviewed forum for insights on the chemical aspects of occurrence, distribution, transport, transformation, transfer, fate, and effects of substances in the environment and biota, and their impacts on the uptake of the substances by living organisms. Substances of interests include both beneficial and toxic ones, especially nutrients, heavy metals, persistent organic pollutants, and emerging contaminants, such as engineered nanomaterials, as well as pharmaceuticals and personal-care products as pollutants. It is the aim of this Journal to develop an international community of experienced colleagues to promote the research, discussion, review, and spread of information on chemical speciation and bioavailability, which is a topic of interest to researchers in many disciplines, including environmental, chemical, biological, food, medical, toxicology, and health sciences. Key themes in the scope of the Journal include, but are not limited to, the following “6Ms”: Methods for speciation analysis and the evaluation of bioavailability, especially the development, validation, and application of novel methods and techniques. Media that sustain the processes of release, distribution, transformation, and transfer of chemical speciation; of particular interest are emerging contaminants, such as engineered nanomaterials, pharmaceuticals, and personal-care products. Mobility of substance species in environment and biota, either spatially or temporally. Matters that influence the chemical speciation and bioavailability, mainly environmentally relevant conditions. Mechanisms that govern the transport, transformation, transfer, and fate of chemical speciation in the environment, and the biouptake of substances. Models for the simulation of chemical speciation and bioavailability, and for the prediction of toxicity. Chemical Speciation & Bioavailability is a fully open access journal. This means all submitted articles will, if accepted, be available for anyone to read, anywhere, at any time. immediately on publication. There are no charges for submission to this journal.
期刊最新文献
Vertical distribution and release characteristics of phosphorus forms in the sediments from the river inflow area of Dianchi Lake, China Chemical speciation and complexation modeling of trace and rare earth elements in groundwater of Oban Massif and Mamfe mMbayment southeastern Nigeria Combined effects of straw-derived biochar and bio-based polymer-coated urea on nitrogen use efficiency and cotton yield Application of activated charcoal and nanocarbon to callus induction and plant regeneration in aromatic rice (Oryza sativa L.) Co-transport of Pb (II) and Cd (II) in saturated porous media: effects of colloids, flow rate and grain size
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1