Yen-Hua Huang, Kyrre Kausrud, Ayesha Hassim, Sunday O. Ochai, O. Louis van Schalkwyk, Edgar H. Dekker, Alexander Buyantuev, Claudine C. Cloete, J. Werner Kilian, John K. E. Mfune, Pauline L. Kamath, Henriette van Heerden, Wendy C. Turner
{"title":"两个多宿主热带稀树草原系统中双季炭疽爆发动态的环境驱动因素","authors":"Yen-Hua Huang, Kyrre Kausrud, Ayesha Hassim, Sunday O. Ochai, O. Louis van Schalkwyk, Edgar H. Dekker, Alexander Buyantuev, Claudine C. Cloete, J. Werner Kilian, John K. E. Mfune, Pauline L. Kamath, Henriette van Heerden, Wendy C. Turner","doi":"10.1002/ecm.1526","DOIUrl":null,"url":null,"abstract":"<p>Environmental factors are common forces driving infectious disease dynamics. We compared interannual and seasonal patterns of anthrax infections in two multihost systems in southern Africa: Etosha National Park, Namibia, and Kruger National Park, South Africa. Using several decades of mortality data from each system, we assessed possible transmission mechanisms behind anthrax dynamics, examining (1) within- and between-species temporal case correlations and (2) associations between anthrax mortalities and environmental factors, specifically rainfall and the Normalized Difference Vegetation Index (NDVI), with empirical dynamic modeling. Anthrax cases in Kruger had wide interannual variation in case numbers, and large outbreaks seemed to follow a roughly decadal cycle. In contrast, outbreaks in Etosha were smaller in magnitude and occurred annually. In Etosha, the host species commonly affected remained consistent over several decades, although plains zebra (<i>Equus quagga</i>) became relatively more dominant. In Kruger, turnover of the main host species occurred after the 1990s, where the previously dominant host species, greater kudu (<i>Tragelaphus strepsiceros</i>), was replaced by impala (<i>Aepyceros melampus</i>). In both parks, anthrax infections showed two seasonal peaks, with each species having only one peak in a year. Zebra, springbok (<i>Antidorcas marsupialis</i>), wildebeest (<i>Connochaetes taurinus</i>), and impala cases peaked in wet seasons, while elephant (<i>Loxodonta africana</i>), kudu, and buffalo (<i>Syncerus caffer</i>) cases peaked in dry seasons. For common host species shared between the two parks, anthrax mortalities peaked in the same season in both systems. Among host species with cases peaking in the same season, anthrax mortalities were mostly synchronized, which implies similar transmission mechanisms or shared sources of exposure. Between seasons, outbreaks in one species may contribute to more cases in another species in the following season. Higher vegetation greenness was associated with more zebra and springbok anthrax mortalities in Etosha but fewer elephant cases in Kruger. These results suggest that host behavioral responses to changing environmental conditions may affect anthrax transmission risk, with differences in transmission mechanisms leading to multihost biseasonal outbreaks. This study reveals the dynamics and potential environmental drivers of anthrax in two savanna systems, providing a better understanding of factors driving biseasonal dynamics and outbreak variation among locations.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2022-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://esajournals.onlinelibrary.wiley.com/doi/epdf/10.1002/ecm.1526","citationCount":"5","resultStr":"{\"title\":\"Environmental drivers of biseasonal anthrax outbreak dynamics in two multihost savanna systems\",\"authors\":\"Yen-Hua Huang, Kyrre Kausrud, Ayesha Hassim, Sunday O. Ochai, O. Louis van Schalkwyk, Edgar H. Dekker, Alexander Buyantuev, Claudine C. Cloete, J. Werner Kilian, John K. E. Mfune, Pauline L. Kamath, Henriette van Heerden, Wendy C. Turner\",\"doi\":\"10.1002/ecm.1526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Environmental factors are common forces driving infectious disease dynamics. We compared interannual and seasonal patterns of anthrax infections in two multihost systems in southern Africa: Etosha National Park, Namibia, and Kruger National Park, South Africa. Using several decades of mortality data from each system, we assessed possible transmission mechanisms behind anthrax dynamics, examining (1) within- and between-species temporal case correlations and (2) associations between anthrax mortalities and environmental factors, specifically rainfall and the Normalized Difference Vegetation Index (NDVI), with empirical dynamic modeling. Anthrax cases in Kruger had wide interannual variation in case numbers, and large outbreaks seemed to follow a roughly decadal cycle. In contrast, outbreaks in Etosha were smaller in magnitude and occurred annually. In Etosha, the host species commonly affected remained consistent over several decades, although plains zebra (<i>Equus quagga</i>) became relatively more dominant. In Kruger, turnover of the main host species occurred after the 1990s, where the previously dominant host species, greater kudu (<i>Tragelaphus strepsiceros</i>), was replaced by impala (<i>Aepyceros melampus</i>). In both parks, anthrax infections showed two seasonal peaks, with each species having only one peak in a year. Zebra, springbok (<i>Antidorcas marsupialis</i>), wildebeest (<i>Connochaetes taurinus</i>), and impala cases peaked in wet seasons, while elephant (<i>Loxodonta africana</i>), kudu, and buffalo (<i>Syncerus caffer</i>) cases peaked in dry seasons. For common host species shared between the two parks, anthrax mortalities peaked in the same season in both systems. Among host species with cases peaking in the same season, anthrax mortalities were mostly synchronized, which implies similar transmission mechanisms or shared sources of exposure. Between seasons, outbreaks in one species may contribute to more cases in another species in the following season. Higher vegetation greenness was associated with more zebra and springbok anthrax mortalities in Etosha but fewer elephant cases in Kruger. These results suggest that host behavioral responses to changing environmental conditions may affect anthrax transmission risk, with differences in transmission mechanisms leading to multihost biseasonal outbreaks. This study reveals the dynamics and potential environmental drivers of anthrax in two savanna systems, providing a better understanding of factors driving biseasonal dynamics and outbreak variation among locations.</p>\",\"PeriodicalId\":11505,\"journal\":{\"name\":\"Ecological Monographs\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2022-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://esajournals.onlinelibrary.wiley.com/doi/epdf/10.1002/ecm.1526\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Monographs\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ecm.1526\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Monographs","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecm.1526","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Environmental drivers of biseasonal anthrax outbreak dynamics in two multihost savanna systems
Environmental factors are common forces driving infectious disease dynamics. We compared interannual and seasonal patterns of anthrax infections in two multihost systems in southern Africa: Etosha National Park, Namibia, and Kruger National Park, South Africa. Using several decades of mortality data from each system, we assessed possible transmission mechanisms behind anthrax dynamics, examining (1) within- and between-species temporal case correlations and (2) associations between anthrax mortalities and environmental factors, specifically rainfall and the Normalized Difference Vegetation Index (NDVI), with empirical dynamic modeling. Anthrax cases in Kruger had wide interannual variation in case numbers, and large outbreaks seemed to follow a roughly decadal cycle. In contrast, outbreaks in Etosha were smaller in magnitude and occurred annually. In Etosha, the host species commonly affected remained consistent over several decades, although plains zebra (Equus quagga) became relatively more dominant. In Kruger, turnover of the main host species occurred after the 1990s, where the previously dominant host species, greater kudu (Tragelaphus strepsiceros), was replaced by impala (Aepyceros melampus). In both parks, anthrax infections showed two seasonal peaks, with each species having only one peak in a year. Zebra, springbok (Antidorcas marsupialis), wildebeest (Connochaetes taurinus), and impala cases peaked in wet seasons, while elephant (Loxodonta africana), kudu, and buffalo (Syncerus caffer) cases peaked in dry seasons. For common host species shared between the two parks, anthrax mortalities peaked in the same season in both systems. Among host species with cases peaking in the same season, anthrax mortalities were mostly synchronized, which implies similar transmission mechanisms or shared sources of exposure. Between seasons, outbreaks in one species may contribute to more cases in another species in the following season. Higher vegetation greenness was associated with more zebra and springbok anthrax mortalities in Etosha but fewer elephant cases in Kruger. These results suggest that host behavioral responses to changing environmental conditions may affect anthrax transmission risk, with differences in transmission mechanisms leading to multihost biseasonal outbreaks. This study reveals the dynamics and potential environmental drivers of anthrax in two savanna systems, providing a better understanding of factors driving biseasonal dynamics and outbreak variation among locations.
期刊介绍:
The vision for Ecological Monographs is that it should be the place for publishing integrative, synthetic papers that elaborate new directions for the field of ecology.
Original Research Papers published in Ecological Monographs will continue to document complex observational, experimental, or theoretical studies that by their very integrated nature defy dissolution into shorter publications focused on a single topic or message.
Reviews will be comprehensive and synthetic papers that establish new benchmarks in the field, define directions for future research, contribute to fundamental understanding of ecological principles, and derive principles for ecological management in its broadest sense (including, but not limited to: conservation, mitigation, restoration, and pro-active protection of the environment). Reviews should reflect the full development of a topic and encompass relevant natural history, observational and experimental data, analyses, models, and theory. Reviews published in Ecological Monographs should further blur the boundaries between “basic” and “applied” ecology.
Concepts and Synthesis papers will conceptually advance the field of ecology. These papers are expected to go well beyond works being reviewed and include discussion of new directions, new syntheses, and resolutions of old questions.
In this world of rapid scientific advancement and never-ending environmental change, there needs to be room for the thoughtful integration of scientific ideas, data, and concepts that feeds the mind and guides the development of the maturing science of ecology. Ecological Monographs provides that room, with an expansive view to a sustainable future.