{"title":"基于改进NARX神经网络的风暴潮水位预测","authors":"Lianbo Li, Wenhao Wu, Wenjun Zhang, Zhenyu Zhu, Zhengqian Li, Yihan Wang, Sen Niu","doi":"10.1007/s10825-023-02005-z","DOIUrl":null,"url":null,"abstract":"<div><p>The northern Gulf of Mexico coast is affected by the North Atlantic hurricane season, which causes storm surge disasters every year and brings serious economic losses to the southern USA; therefore, it is necessary to make an accurate advance prediction of storm surge level. In this paper, a model with simple structure, fast computation speed, and accurate prediction results has been constructed based on nonlinear auto-regressive exogenous (NARX) neural network. Five types of data collected from observation stations are selected as the input factors of the model. To improve the model's computational efficiency, a neuron pruning strategy based on sensitivity analysis is introduced. By analyzing the output weights of the neurons in the hidden layer on the sensitivity of the model prediction output, the model structure can be adjusted accordingly. Moreover, a modular prediction method is introduced based on the tide harmonic analysis data so as to make the model prediction results more accurate. At last, a complete storm surge level prediction model, pruned modular (PM)-NARX, is constructed. In this paper, the model is trained by using historical data and used for storm surge level prediction along the northern Gulf of Mexico coast in 2020. The simulation test results show that the correlation between the predicted data and the observed data is stable above 0.99 at 12 h in advance and the model is able to produce the results within one minute. The prediction speed, accuracy, and stability are higher than those of conventional models. In addition, two sets of follow-up tests show that the prediction accuracy of the model can still maintain a high level. The above can prove that the pruned modular (PM)-NARX model can effectively provide early warning before the storm surge to avoid property damage and human casualties.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"22 2","pages":"783 - 804"},"PeriodicalIF":2.2000,"publicationDate":"2023-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Storm surge level prediction based on improved NARX neural network\",\"authors\":\"Lianbo Li, Wenhao Wu, Wenjun Zhang, Zhenyu Zhu, Zhengqian Li, Yihan Wang, Sen Niu\",\"doi\":\"10.1007/s10825-023-02005-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The northern Gulf of Mexico coast is affected by the North Atlantic hurricane season, which causes storm surge disasters every year and brings serious economic losses to the southern USA; therefore, it is necessary to make an accurate advance prediction of storm surge level. In this paper, a model with simple structure, fast computation speed, and accurate prediction results has been constructed based on nonlinear auto-regressive exogenous (NARX) neural network. Five types of data collected from observation stations are selected as the input factors of the model. To improve the model's computational efficiency, a neuron pruning strategy based on sensitivity analysis is introduced. By analyzing the output weights of the neurons in the hidden layer on the sensitivity of the model prediction output, the model structure can be adjusted accordingly. Moreover, a modular prediction method is introduced based on the tide harmonic analysis data so as to make the model prediction results more accurate. At last, a complete storm surge level prediction model, pruned modular (PM)-NARX, is constructed. In this paper, the model is trained by using historical data and used for storm surge level prediction along the northern Gulf of Mexico coast in 2020. The simulation test results show that the correlation between the predicted data and the observed data is stable above 0.99 at 12 h in advance and the model is able to produce the results within one minute. The prediction speed, accuracy, and stability are higher than those of conventional models. In addition, two sets of follow-up tests show that the prediction accuracy of the model can still maintain a high level. The above can prove that the pruned modular (PM)-NARX model can effectively provide early warning before the storm surge to avoid property damage and human casualties.</p></div>\",\"PeriodicalId\":620,\"journal\":{\"name\":\"Journal of Computational Electronics\",\"volume\":\"22 2\",\"pages\":\"783 - 804\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10825-023-02005-z\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10825-023-02005-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Storm surge level prediction based on improved NARX neural network
The northern Gulf of Mexico coast is affected by the North Atlantic hurricane season, which causes storm surge disasters every year and brings serious economic losses to the southern USA; therefore, it is necessary to make an accurate advance prediction of storm surge level. In this paper, a model with simple structure, fast computation speed, and accurate prediction results has been constructed based on nonlinear auto-regressive exogenous (NARX) neural network. Five types of data collected from observation stations are selected as the input factors of the model. To improve the model's computational efficiency, a neuron pruning strategy based on sensitivity analysis is introduced. By analyzing the output weights of the neurons in the hidden layer on the sensitivity of the model prediction output, the model structure can be adjusted accordingly. Moreover, a modular prediction method is introduced based on the tide harmonic analysis data so as to make the model prediction results more accurate. At last, a complete storm surge level prediction model, pruned modular (PM)-NARX, is constructed. In this paper, the model is trained by using historical data and used for storm surge level prediction along the northern Gulf of Mexico coast in 2020. The simulation test results show that the correlation between the predicted data and the observed data is stable above 0.99 at 12 h in advance and the model is able to produce the results within one minute. The prediction speed, accuracy, and stability are higher than those of conventional models. In addition, two sets of follow-up tests show that the prediction accuracy of the model can still maintain a high level. The above can prove that the pruned modular (PM)-NARX model can effectively provide early warning before the storm surge to avoid property damage and human casualties.
期刊介绍:
he Journal of Computational Electronics brings together research on all aspects of modeling and simulation of modern electronics. This includes optical, electronic, mechanical, and quantum mechanical aspects, as well as research on the underlying mathematical algorithms and computational details. The related areas of energy conversion/storage and of molecular and biological systems, in which the thrust is on the charge transport, electronic, mechanical, and optical properties, are also covered.
In particular, we encourage manuscripts dealing with device simulation; with optical and optoelectronic systems and photonics; with energy storage (e.g. batteries, fuel cells) and harvesting (e.g. photovoltaic), with simulation of circuits, VLSI layout, logic and architecture (based on, for example, CMOS devices, quantum-cellular automata, QBITs, or single-electron transistors); with electromagnetic simulations (such as microwave electronics and components); or with molecular and biological systems. However, in all these cases, the submitted manuscripts should explicitly address the electronic properties of the relevant systems, materials, or devices and/or present novel contributions to the physical models, computational strategies, or numerical algorithms.