{"title":"碳钢与低合金钢螺栓连接中镀锌腐蚀的数值模拟","authors":"R. Radouani, Y. Ech-Charqy, M. Essahli","doi":"10.1155/2017/6174904","DOIUrl":null,"url":null,"abstract":"The galvanic corrosion of a bolt joint combining carbon steel end plate and low alloy steel bolt was investigated electrochemically in a 1 M HCl solution. The corrosion parameters of the joint components were used for numerical simulation using Comsol Multiphysics software to analyze the galvanic corrosion behavior at the contact zone between the head bolt and the end plate. In this research work we evaluate the variation of the corrosion rate in the steel end plate considered as the anode, in order to determine the lifetime of the bolted assembly used in steel structures. Three materials (20MnCr5, 42CrMo4, and 32CrMoV13) and three bolts (M12, M16, and M20) were tested in two thicknesses of electrolyte 1 M HCl ( = 1 mm, = 20 mm). It is found that the corrosion rate of the anode part (end plate) is higher for 32CrMoV13 materials and it increases if both diameter of the bolt and thickness of the electrolyte increase (Cr(M20) > Cr(M16) > Cr(M12) and Cr( = 20 mm) > Cr( = 1 mm)). This corrosion rate is higher in the contact area between the bolt head and the end plate, and it decreases if we move away from this contact area.","PeriodicalId":13893,"journal":{"name":"International Journal of Corrosion","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2017-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2017/6174904","citationCount":"12","resultStr":"{\"title\":\"Numerical Simulation of Galvanic Corrosion between Carbon Steel and Low Alloy Steel in a Bolted Joint\",\"authors\":\"R. Radouani, Y. Ech-Charqy, M. Essahli\",\"doi\":\"10.1155/2017/6174904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The galvanic corrosion of a bolt joint combining carbon steel end plate and low alloy steel bolt was investigated electrochemically in a 1 M HCl solution. The corrosion parameters of the joint components were used for numerical simulation using Comsol Multiphysics software to analyze the galvanic corrosion behavior at the contact zone between the head bolt and the end plate. In this research work we evaluate the variation of the corrosion rate in the steel end plate considered as the anode, in order to determine the lifetime of the bolted assembly used in steel structures. Three materials (20MnCr5, 42CrMo4, and 32CrMoV13) and three bolts (M12, M16, and M20) were tested in two thicknesses of electrolyte 1 M HCl ( = 1 mm, = 20 mm). It is found that the corrosion rate of the anode part (end plate) is higher for 32CrMoV13 materials and it increases if both diameter of the bolt and thickness of the electrolyte increase (Cr(M20) > Cr(M16) > Cr(M12) and Cr( = 20 mm) > Cr( = 1 mm)). This corrosion rate is higher in the contact area between the bolt head and the end plate, and it decreases if we move away from this contact area.\",\"PeriodicalId\":13893,\"journal\":{\"name\":\"International Journal of Corrosion\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2017-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2017/6174904\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Corrosion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2017/6174904\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Corrosion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2017/6174904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 12
摘要
用电化学方法研究了碳钢端板与低合金钢螺栓连接处的电化学腐蚀 M HCl溶液。使用Comsol Multiphysics软件对接头部件的腐蚀参数进行数值模拟,以分析头部螺栓和端板之间接触区的电偶腐蚀行为。在这项研究工作中,我们评估了作为阳极的钢端板中腐蚀速率的变化,以确定钢结构中使用的螺栓组件的寿命。三种材料(20MnCr5、42CrMo4和32CrMoV13)和三种螺栓(M12、M16和M20)在两种厚度的电解质1中进行了测试 M盐酸(=1 mm,=20 mm)。研究发现,对于32CrMoV13材料,阳极部分(端板)的腐蚀速率更高,并且如果螺栓直径和电解质厚度都增加(Cr(M20)>Cr(M16)>铬(M12)和Cr(=20 mm)>Cr(=1 mm))。这种腐蚀率在螺栓头和端板之间的接触区域更高,如果我们离开这个接触区域,腐蚀率就会降低。
Numerical Simulation of Galvanic Corrosion between Carbon Steel and Low Alloy Steel in a Bolted Joint
The galvanic corrosion of a bolt joint combining carbon steel end plate and low alloy steel bolt was investigated electrochemically in a 1 M HCl solution. The corrosion parameters of the joint components were used for numerical simulation using Comsol Multiphysics software to analyze the galvanic corrosion behavior at the contact zone between the head bolt and the end plate. In this research work we evaluate the variation of the corrosion rate in the steel end plate considered as the anode, in order to determine the lifetime of the bolted assembly used in steel structures. Three materials (20MnCr5, 42CrMo4, and 32CrMoV13) and three bolts (M12, M16, and M20) were tested in two thicknesses of electrolyte 1 M HCl ( = 1 mm, = 20 mm). It is found that the corrosion rate of the anode part (end plate) is higher for 32CrMoV13 materials and it increases if both diameter of the bolt and thickness of the electrolyte increase (Cr(M20) > Cr(M16) > Cr(M12) and Cr( = 20 mm) > Cr( = 1 mm)). This corrosion rate is higher in the contact area between the bolt head and the end plate, and it decreases if we move away from this contact area.