{"title":"关键元素钕的资源及回收前景综述","authors":"Dr. Sanghamitra Pradhan, Prof. Sujata Mishra","doi":"10.1002/cben.202200065","DOIUrl":null,"url":null,"abstract":"<p>Neodymium is critically scarce and is often used in supportable technologies such as permanent magnets, batteries, and catalysts. The extraction of it from virgin ores causes environmental degradation and recycling of end-of-life (EOL) products proves to be an alternative to meet its future criticality. From an environmental and economic point of view, magnets produced from recovered neodymium perform better than the ones produced from virgin neodymium. In this review various technologies such as hydro metallurgy, pyro metallurgy, supercritical CO<sub>2</sub> extraction, desalination, and adsorption have been discussed for the recovery of this metal from different EOL sources. The advantages and limitations of these methods are summarized. Different experimental status like sources, temperature, aqueous phase composition, organic phase make up, and maximum recovery efficiency are also looked upon. This review may prove beneficial for the researchers to design recovery road maps under different circumstances.</p>","PeriodicalId":48623,"journal":{"name":"ChemBioEng Reviews","volume":"10 5","pages":"684-697"},"PeriodicalIF":6.2000,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Overview on Resource and Recovery Prospectives of the Critical Element Neodymium\",\"authors\":\"Dr. Sanghamitra Pradhan, Prof. Sujata Mishra\",\"doi\":\"10.1002/cben.202200065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Neodymium is critically scarce and is often used in supportable technologies such as permanent magnets, batteries, and catalysts. The extraction of it from virgin ores causes environmental degradation and recycling of end-of-life (EOL) products proves to be an alternative to meet its future criticality. From an environmental and economic point of view, magnets produced from recovered neodymium perform better than the ones produced from virgin neodymium. In this review various technologies such as hydro metallurgy, pyro metallurgy, supercritical CO<sub>2</sub> extraction, desalination, and adsorption have been discussed for the recovery of this metal from different EOL sources. The advantages and limitations of these methods are summarized. Different experimental status like sources, temperature, aqueous phase composition, organic phase make up, and maximum recovery efficiency are also looked upon. This review may prove beneficial for the researchers to design recovery road maps under different circumstances.</p>\",\"PeriodicalId\":48623,\"journal\":{\"name\":\"ChemBioEng Reviews\",\"volume\":\"10 5\",\"pages\":\"684-697\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2023-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemBioEng Reviews\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cben.202200065\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemBioEng Reviews","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cben.202200065","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
An Overview on Resource and Recovery Prospectives of the Critical Element Neodymium
Neodymium is critically scarce and is often used in supportable technologies such as permanent magnets, batteries, and catalysts. The extraction of it from virgin ores causes environmental degradation and recycling of end-of-life (EOL) products proves to be an alternative to meet its future criticality. From an environmental and economic point of view, magnets produced from recovered neodymium perform better than the ones produced from virgin neodymium. In this review various technologies such as hydro metallurgy, pyro metallurgy, supercritical CO2 extraction, desalination, and adsorption have been discussed for the recovery of this metal from different EOL sources. The advantages and limitations of these methods are summarized. Different experimental status like sources, temperature, aqueous phase composition, organic phase make up, and maximum recovery efficiency are also looked upon. This review may prove beneficial for the researchers to design recovery road maps under different circumstances.
ChemBioEng ReviewsBiochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
7.90
自引率
2.10%
发文量
45
期刊介绍:
Launched in 2014, ChemBioEng Reviews is aimed to become a top-ranking journal publishing review articles offering information on significant developments and provide fundamental knowledge of important topics in the fields of chemical engineering and biotechnology. The journal supports academics and researchers in need for concise, easy to access information on specific topics. The articles cover all fields of (bio-) chemical engineering and technology, e.g.,