低风速旋转压电能量采集器的设计与实验分析

IF 2.7 3区 材料科学 Q2 ENGINEERING, MECHANICAL International Journal of Mechanics and Materials in Design Pub Date : 2023-06-24 DOI:10.1007/s10999-023-09663-8
Tejkaran Narolia, Gangaram Mandaloi, Vijay Kumar Gupta
{"title":"低风速旋转压电能量采集器的设计与实验分析","authors":"Tejkaran Narolia,&nbsp;Gangaram Mandaloi,&nbsp;Vijay Kumar Gupta","doi":"10.1007/s10999-023-09663-8","DOIUrl":null,"url":null,"abstract":"<div><p>The Industry 4.0 has focus on connected devices and machines. It needs a number of sensors connected with each other and transfer of the information. Most of the sensors and sensor nodes require low power. In remote areas, where the power is limited, self-powered devices are more useful. Wind is available everywhere but the wind speed varies from place to place. Windmills are being used to generate electric power from the wind, however, is restricted due to large size and high cost. In this paper, it is proposed to develop a magnetic excited rotary harvester to harvest power at low wind speed. This can solve one of the major problems of frequent replacement of the battery in remote devices required for sensor and sensor nodes. To convert the rotation of the windmill to electric power, the rotation energy is converted to vibrating motion of a piezoelectric cantilever beam. The vibrations in the beam are generated with the help of interaction of magnetic field on the stator and blade mounted on the rotating shaft. The vibrations are then converted to electric charge due to the property of the piezoelectric material. An analytical model is developed and the results are compared with experiments. It is observed that at minimum wind speed of 2 m/s the estimated power is 1.06 mW while at a normal wind speed of 5 m/s power is calculated as 2.21 mW from the device.</p></div>","PeriodicalId":593,"journal":{"name":"International Journal of Mechanics and Materials in Design","volume":"19 4","pages":"793 - 804"},"PeriodicalIF":2.7000,"publicationDate":"2023-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and experimental analysis of low wind speed rotary piezoelectric energy harvester\",\"authors\":\"Tejkaran Narolia,&nbsp;Gangaram Mandaloi,&nbsp;Vijay Kumar Gupta\",\"doi\":\"10.1007/s10999-023-09663-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Industry 4.0 has focus on connected devices and machines. It needs a number of sensors connected with each other and transfer of the information. Most of the sensors and sensor nodes require low power. In remote areas, where the power is limited, self-powered devices are more useful. Wind is available everywhere but the wind speed varies from place to place. Windmills are being used to generate electric power from the wind, however, is restricted due to large size and high cost. In this paper, it is proposed to develop a magnetic excited rotary harvester to harvest power at low wind speed. This can solve one of the major problems of frequent replacement of the battery in remote devices required for sensor and sensor nodes. To convert the rotation of the windmill to electric power, the rotation energy is converted to vibrating motion of a piezoelectric cantilever beam. The vibrations in the beam are generated with the help of interaction of magnetic field on the stator and blade mounted on the rotating shaft. The vibrations are then converted to electric charge due to the property of the piezoelectric material. An analytical model is developed and the results are compared with experiments. It is observed that at minimum wind speed of 2 m/s the estimated power is 1.06 mW while at a normal wind speed of 5 m/s power is calculated as 2.21 mW from the device.</p></div>\",\"PeriodicalId\":593,\"journal\":{\"name\":\"International Journal of Mechanics and Materials in Design\",\"volume\":\"19 4\",\"pages\":\"793 - 804\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechanics and Materials in Design\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10999-023-09663-8\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanics and Materials in Design","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10999-023-09663-8","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

工业4.0的重点是连接设备和机器。它需要多个传感器相互连接并传递信息。大多数传感器和传感器节点需要低功耗。在电力有限的偏远地区,自供电设备更有用。到处都有风,但风速因地而异。风车被用于风力发电,但由于体积大、成本高而受到限制。本文提出研制一种磁激励旋转收割机,用于低风速下的电力采集。这可以解决传感器和传感器节点所需的远程设备中频繁更换电池的主要问题之一。为了将风车的旋转转化为电能,将旋转能量转化为压电悬臂梁的振动运动。梁内的振动是通过磁场对安装在转轴上的定子和叶片的相互作用产生的。由于压电材料的特性,振动随后转化为电荷。建立了解析模型,并与实验结果进行了比较。可以看出,在最小风速为2 m/s时,估计功率为1.06 mW,而在正常风速为5 m/s时,计算功率为2.21 mW。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design and experimental analysis of low wind speed rotary piezoelectric energy harvester

The Industry 4.0 has focus on connected devices and machines. It needs a number of sensors connected with each other and transfer of the information. Most of the sensors and sensor nodes require low power. In remote areas, where the power is limited, self-powered devices are more useful. Wind is available everywhere but the wind speed varies from place to place. Windmills are being used to generate electric power from the wind, however, is restricted due to large size and high cost. In this paper, it is proposed to develop a magnetic excited rotary harvester to harvest power at low wind speed. This can solve one of the major problems of frequent replacement of the battery in remote devices required for sensor and sensor nodes. To convert the rotation of the windmill to electric power, the rotation energy is converted to vibrating motion of a piezoelectric cantilever beam. The vibrations in the beam are generated with the help of interaction of magnetic field on the stator and blade mounted on the rotating shaft. The vibrations are then converted to electric charge due to the property of the piezoelectric material. An analytical model is developed and the results are compared with experiments. It is observed that at minimum wind speed of 2 m/s the estimated power is 1.06 mW while at a normal wind speed of 5 m/s power is calculated as 2.21 mW from the device.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Mechanics and Materials in Design
International Journal of Mechanics and Materials in Design ENGINEERING, MECHANICAL-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
6.00
自引率
5.40%
发文量
41
审稿时长
>12 weeks
期刊介绍: It is the objective of this journal to provide an effective medium for the dissemination of recent advances and original works in mechanics and materials'' engineering and their impact on the design process in an integrated, highly focused and coherent format. The goal is to enable mechanical, aeronautical, civil, automotive, biomedical, chemical and nuclear engineers, researchers and scientists to keep abreast of recent developments and exchange ideas on a number of topics relating to the use of mechanics and materials in design. Analytical synopsis of contents: The following non-exhaustive list is considered to be within the scope of the International Journal of Mechanics and Materials in Design: Intelligent Design: Nano-engineering and Nano-science in Design; Smart Materials and Adaptive Structures in Design; Mechanism(s) Design; Design against Failure; Design for Manufacturing; Design of Ultralight Structures; Design for a Clean Environment; Impact and Crashworthiness; Microelectronic Packaging Systems. Advanced Materials in Design: Newly Engineered Materials; Smart Materials and Adaptive Structures; Micromechanical Modelling of Composites; Damage Characterisation of Advanced/Traditional Materials; Alternative Use of Traditional Materials in Design; Functionally Graded Materials; Failure Analysis: Fatigue and Fracture; Multiscale Modelling Concepts and Methodology; Interfaces, interfacial properties and characterisation. Design Analysis and Optimisation: Shape and Topology Optimisation; Structural Optimisation; Optimisation Algorithms in Design; Nonlinear Mechanics in Design; Novel Numerical Tools in Design; Geometric Modelling and CAD Tools in Design; FEM, BEM and Hybrid Methods; Integrated Computer Aided Design; Computational Failure Analysis; Coupled Thermo-Electro-Mechanical Designs.
期刊最新文献
Strength and stability analysis of composite inverted conical structure Multi-objective topology optimization for materials with negative Poisson’s ratio and thermal insulation An efficient approximation algorithm for variance global sensitivity by Bayesian updating Theoretical prediction and experimental verification of thermomechanical deflection responses of geometrically nonlinear porous graded curved structure Voxel-based evolutionary topological optimization of connected structures for natural frequency optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1