Bahar Asadi, H. Mirzadeh, N. Olov, Ali Samadikuchaksaraei, Raheleh Kheirbakhsh, R. Moradi, S. Amanpour, S. Bagheri‐Khoulenjani
{"title":"基于羧甲基壳聚糖/明胶/羟基磷灰石的骨组织工程仿生冷冻材料","authors":"Bahar Asadi, H. Mirzadeh, N. Olov, Ali Samadikuchaksaraei, Raheleh Kheirbakhsh, R. Moradi, S. Amanpour, S. Bagheri‐Khoulenjani","doi":"10.1680/jbibn.22.00020","DOIUrl":null,"url":null,"abstract":"Gelation at temperature below freezing point of solvent is known as cryogelation that attracted attention in regenerative medicine due to improved mechanical and structural properties. This study focuses on using cryogelation as a versatile method for fabricating biomimetic scaffolds with improved mechanical strength and larger pore size with potential for bone tissue engineering applications. These scaffolds comprising carboxymethyl-chitosan/gelatin/ nano-hydroxyapatite were formed via cryogelation. The effects of three parameters, including crosslinker concentration, mineral content and gelatin-to-polymer ratio, were investigated on the physical, chemical and mechanical properties. In this work, MG63 cells were used for in vitro assay. In addition, in vivo assay was conducted to investigate the biocompatibility of nanocomposite scaffolds. The results showed that all scaffolds have a porous structure with interconnected pores with morphology similar to bone structure. Their pore size, porosity, and swelling ratio decreased with increased crosslinker concentration, while nano-hydroxyapatite has the opposite effect. XRD results also showed that the inorganic phase retained its crystallinity in the substrate with a slight decrease in crystal size. In addition, the scaffold showed no toxicity in either in vitro or in vivo studies. Obtained results showed that the biomimetic cryogels based on carboxymerthyl chitosan/gelatin/hydroxyapatite has a potential for bone tissue engineering.","PeriodicalId":48847,"journal":{"name":"Bioinspired Biomimetic and Nanobiomaterials","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biomimetic cryogels based on carboxymethyl chitosan/gelatin/hydroxyapatite for bone tissue engineering\",\"authors\":\"Bahar Asadi, H. Mirzadeh, N. Olov, Ali Samadikuchaksaraei, Raheleh Kheirbakhsh, R. Moradi, S. Amanpour, S. Bagheri‐Khoulenjani\",\"doi\":\"10.1680/jbibn.22.00020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gelation at temperature below freezing point of solvent is known as cryogelation that attracted attention in regenerative medicine due to improved mechanical and structural properties. This study focuses on using cryogelation as a versatile method for fabricating biomimetic scaffolds with improved mechanical strength and larger pore size with potential for bone tissue engineering applications. These scaffolds comprising carboxymethyl-chitosan/gelatin/ nano-hydroxyapatite were formed via cryogelation. The effects of three parameters, including crosslinker concentration, mineral content and gelatin-to-polymer ratio, were investigated on the physical, chemical and mechanical properties. In this work, MG63 cells were used for in vitro assay. In addition, in vivo assay was conducted to investigate the biocompatibility of nanocomposite scaffolds. The results showed that all scaffolds have a porous structure with interconnected pores with morphology similar to bone structure. Their pore size, porosity, and swelling ratio decreased with increased crosslinker concentration, while nano-hydroxyapatite has the opposite effect. XRD results also showed that the inorganic phase retained its crystallinity in the substrate with a slight decrease in crystal size. In addition, the scaffold showed no toxicity in either in vitro or in vivo studies. Obtained results showed that the biomimetic cryogels based on carboxymerthyl chitosan/gelatin/hydroxyapatite has a potential for bone tissue engineering.\",\"PeriodicalId\":48847,\"journal\":{\"name\":\"Bioinspired Biomimetic and Nanobiomaterials\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinspired Biomimetic and Nanobiomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1680/jbibn.22.00020\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspired Biomimetic and Nanobiomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jbibn.22.00020","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Biomimetic cryogels based on carboxymethyl chitosan/gelatin/hydroxyapatite for bone tissue engineering
Gelation at temperature below freezing point of solvent is known as cryogelation that attracted attention in regenerative medicine due to improved mechanical and structural properties. This study focuses on using cryogelation as a versatile method for fabricating biomimetic scaffolds with improved mechanical strength and larger pore size with potential for bone tissue engineering applications. These scaffolds comprising carboxymethyl-chitosan/gelatin/ nano-hydroxyapatite were formed via cryogelation. The effects of three parameters, including crosslinker concentration, mineral content and gelatin-to-polymer ratio, were investigated on the physical, chemical and mechanical properties. In this work, MG63 cells were used for in vitro assay. In addition, in vivo assay was conducted to investigate the biocompatibility of nanocomposite scaffolds. The results showed that all scaffolds have a porous structure with interconnected pores with morphology similar to bone structure. Their pore size, porosity, and swelling ratio decreased with increased crosslinker concentration, while nano-hydroxyapatite has the opposite effect. XRD results also showed that the inorganic phase retained its crystallinity in the substrate with a slight decrease in crystal size. In addition, the scaffold showed no toxicity in either in vitro or in vivo studies. Obtained results showed that the biomimetic cryogels based on carboxymerthyl chitosan/gelatin/hydroxyapatite has a potential for bone tissue engineering.
期刊介绍:
Bioinspired, biomimetic and nanobiomaterials are emerging as the most promising area of research within the area of biological materials science and engineering. The technological significance of this area is immense for applications as diverse as tissue engineering and drug delivery biosystems to biomimicked sensors and optical devices.
Bioinspired, Biomimetic and Nanobiomaterials provides a unique scholarly forum for discussion and reporting of structure sensitive functional properties of nature inspired materials.