人工神经网络在天气预报中的应用

A. Ajina, Jaya Christiyan K G, Dheerej N Bhat, Kanishk Saxena
{"title":"人工神经网络在天气预报中的应用","authors":"A. Ajina, Jaya Christiyan K G, Dheerej N Bhat, Kanishk Saxena","doi":"10.22201/icat.24486736e.2023.21.2.1698","DOIUrl":null,"url":null,"abstract":"Currently, weather forecasting is the most commonly discussed topic by social and economic activists. It is also attracting widespread interest due to its application in various public and private sectors that include marine, agriculture, air traffic, and forestry. Recent developments have made climatic changes happen at a dramatic rate, making old methods of weather forecasting less effective, more hectic, and unreliable. Improved and efficient methods of weather prediction are needed to overcome these difficulties. This paper describes machine learning approaches using artificial neural networks to predict the weather of a particular city and compare the different weather conditions in different cities. We demonstrate empirically that Artificial Neural Networks produce very low deviations hence providing nearly accurate results for weather forecasts on a daily basis.","PeriodicalId":15073,"journal":{"name":"Journal of Applied Research and Technology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of weather forecasting using artificial neural networks\",\"authors\":\"A. Ajina, Jaya Christiyan K G, Dheerej N Bhat, Kanishk Saxena\",\"doi\":\"10.22201/icat.24486736e.2023.21.2.1698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently, weather forecasting is the most commonly discussed topic by social and economic activists. It is also attracting widespread interest due to its application in various public and private sectors that include marine, agriculture, air traffic, and forestry. Recent developments have made climatic changes happen at a dramatic rate, making old methods of weather forecasting less effective, more hectic, and unreliable. Improved and efficient methods of weather prediction are needed to overcome these difficulties. This paper describes machine learning approaches using artificial neural networks to predict the weather of a particular city and compare the different weather conditions in different cities. We demonstrate empirically that Artificial Neural Networks produce very low deviations hence providing nearly accurate results for weather forecasts on a daily basis.\",\"PeriodicalId\":15073,\"journal\":{\"name\":\"Journal of Applied Research and Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Research and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22201/icat.24486736e.2023.21.2.1698\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Research and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22201/icat.24486736e.2023.21.2.1698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

目前,天气预报是社会和经济活动家最常讨论的话题。由于它在海洋、农业、航空运输和林业等公共和私营部门的应用,它也引起了广泛的兴趣。最近的发展使气候变化以惊人的速度发生,使旧的天气预报方法变得不那么有效、更加繁忙和不可靠。需要改进和有效的天气预报方法来克服这些困难。本文描述了使用人工神经网络的机器学习方法来预测特定城市的天气,并比较不同城市的不同天气条件。我们从经验上证明,人工神经网络产生的偏差非常低,因此每天为天气预报提供几乎准确的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction of weather forecasting using artificial neural networks
Currently, weather forecasting is the most commonly discussed topic by social and economic activists. It is also attracting widespread interest due to its application in various public and private sectors that include marine, agriculture, air traffic, and forestry. Recent developments have made climatic changes happen at a dramatic rate, making old methods of weather forecasting less effective, more hectic, and unreliable. Improved and efficient methods of weather prediction are needed to overcome these difficulties. This paper describes machine learning approaches using artificial neural networks to predict the weather of a particular city and compare the different weather conditions in different cities. We demonstrate empirically that Artificial Neural Networks produce very low deviations hence providing nearly accurate results for weather forecasts on a daily basis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Research and Technology
Journal of Applied Research and Technology 工程技术-工程:电子与电气
CiteScore
1.50
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
期刊介绍: The Journal of Applied Research and Technology (JART) is a bimonthly open access journal that publishes papers on innovative applications, development of new technologies and efficient solutions in engineering, computing and scientific research. JART publishes manuscripts describing original research, with significant results based on experimental, theoretical and numerical work. The journal does not charge for submission, processing, publication of manuscripts or for color reproduction of photographs. JART classifies research into the following main fields: -Material Science: Biomaterials, carbon, ceramics, composite, metals, polymers, thin films, functional materials and semiconductors. -Computer Science: Computer graphics and visualization, programming, human-computer interaction, neural networks, image processing and software engineering. -Industrial Engineering: Operations research, systems engineering, management science, complex systems and cybernetics applications and information technologies -Electronic Engineering: Solid-state physics, radio engineering, telecommunications, control systems, signal processing, power electronics, electronic devices and circuits and automation. -Instrumentation engineering and science: Measurement devices (pressure, temperature, flow, voltage, frequency etc.), precision engineering, medical devices, instrumentation for education (devices and software), sensor technology, mechatronics and robotics.
期刊最新文献
Use of recycled concrete and rice husk ash for concrete: A review Health assessment of welding by-products in a linear welding automation: Temperature and smoke concentration measurements matlab based graphical user interface for the monitoring and early detection of keratoconus Identification of geothermal potential zone associated with land surface temperature derived from Landsat 8 data using split-window algorithm Effect of microcarbon particle size and dispersion on the electrical conductivity of LLDPE-carbon composite
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1