用于生物医学应用的低SAR柔性可穿戴天线的性能分析

IF 0.8 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Frequenz Pub Date : 2023-07-03 DOI:10.1515/freq-2023-0005
Ramasamy M. Kuppusamy, S. B. Abdulkareem
{"title":"用于生物医学应用的低SAR柔性可穿戴天线的性能分析","authors":"Ramasamy M. Kuppusamy, S. B. Abdulkareem","doi":"10.1515/freq-2023-0005","DOIUrl":null,"url":null,"abstract":"Abstract This article presents a conformal monopole antenna for wearable application in ISM band frequency of 2.45 GHz. The antenna has a return loss of 50.18 dB with good radiation performance. The gain of the antenna is 1.09 dBi which is improved to 3.28 dBi using a metasurface consisting of 3 × 3 array elements. The proposed metamaterial integrated antenna is fabricated on 1 mm thick flexible PDMS substrate. The metamaterial improves the gain while reducing the specific absorption rate (SAR) of the antenna. The geometry size of the metamaterial integrated antenna is 50 × 50 × 24 mm3. The loading effect of antenna by body is analyzed with a hand phantom model. Flexibility and conformability of antenna is analyzed by bending the antenna with various radii in x and y direction. Measured results of the fabricated prototype demonstrate the safety of the suggested wearable antenna for biomedical applications.","PeriodicalId":55143,"journal":{"name":"Frequenz","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance analysis of a flexible wearable antenna with low SAR for biomedical application\",\"authors\":\"Ramasamy M. Kuppusamy, S. B. Abdulkareem\",\"doi\":\"10.1515/freq-2023-0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This article presents a conformal monopole antenna for wearable application in ISM band frequency of 2.45 GHz. The antenna has a return loss of 50.18 dB with good radiation performance. The gain of the antenna is 1.09 dBi which is improved to 3.28 dBi using a metasurface consisting of 3 × 3 array elements. The proposed metamaterial integrated antenna is fabricated on 1 mm thick flexible PDMS substrate. The metamaterial improves the gain while reducing the specific absorption rate (SAR) of the antenna. The geometry size of the metamaterial integrated antenna is 50 × 50 × 24 mm3. The loading effect of antenna by body is analyzed with a hand phantom model. Flexibility and conformability of antenna is analyzed by bending the antenna with various radii in x and y direction. Measured results of the fabricated prototype demonstrate the safety of the suggested wearable antenna for biomedical applications.\",\"PeriodicalId\":55143,\"journal\":{\"name\":\"Frequenz\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frequenz\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/freq-2023-0005\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frequenz","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/freq-2023-0005","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种适用于可穿戴设备的ISM频段2.45 GHz共形单极天线。天线回波损耗为50.18 dB,具有良好的辐射性能。天线的增益为1.09 dBi,采用由3 × 3阵列元素组成的超表面,增益提高到3.28 dBi。所提出的超材料集成天线是在1 mm厚的柔性PDMS衬底上制作的。该材料在提高增益的同时降低了天线的比吸收率(SAR)。超材料集成天线的几何尺寸为50 × 50 × 24 mm3。利用手模模型分析了天线受体载荷的影响。通过在x和y方向上弯曲不同半径的天线,分析了天线的柔性和一致性。制造原型的测量结果证明了建议的生物医学应用可穿戴天线的安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance analysis of a flexible wearable antenna with low SAR for biomedical application
Abstract This article presents a conformal monopole antenna for wearable application in ISM band frequency of 2.45 GHz. The antenna has a return loss of 50.18 dB with good radiation performance. The gain of the antenna is 1.09 dBi which is improved to 3.28 dBi using a metasurface consisting of 3 × 3 array elements. The proposed metamaterial integrated antenna is fabricated on 1 mm thick flexible PDMS substrate. The metamaterial improves the gain while reducing the specific absorption rate (SAR) of the antenna. The geometry size of the metamaterial integrated antenna is 50 × 50 × 24 mm3. The loading effect of antenna by body is analyzed with a hand phantom model. Flexibility and conformability of antenna is analyzed by bending the antenna with various radii in x and y direction. Measured results of the fabricated prototype demonstrate the safety of the suggested wearable antenna for biomedical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frequenz
Frequenz 工程技术-工程:电子与电气
CiteScore
2.40
自引率
18.20%
发文量
81
审稿时长
3 months
期刊介绍: Frequenz is one of the leading scientific and technological journals covering all aspects of RF-, Microwave-, and THz-Engineering. It is a peer-reviewed, bi-monthly published journal. Frequenz was first published in 1947 with a circulation of 7000 copies, focusing on telecommunications. Today, the major objective of Frequenz is to highlight current research activities and development efforts in RF-, Microwave-, and THz-Engineering throughout a wide frequency spectrum ranging from radio via microwave up to THz frequencies. RF-, Microwave-, and THz-Engineering is a very active area of Research & Development as well as of Applications in a wide variety of fields. It has been the key to enabling technologies responsible for phenomenal growth of satellite broadcasting, wireless communications, satellite and terrestrial mobile communications and navigation, high-speed THz communication systems. It will open up new technologies in communications, radar, remote sensing and imaging, in identification and localization as well as in sensors, e.g. for wireless industrial process and environmental monitoring as well as for biomedical sensing.
期刊最新文献
A wideband folded reflectarray antenna with a 3-D printed circularly polarized converter High-selectivity wideband bandpass filter based on quintuple-mode stub-loaded resonator and defected ground structures Wideband circularly polarized reconfigurable metasurface antenna for 5G applications Designing an ultra-wideband directional antipodal Vivaldi antenna with U-slots for biomedical applications using an optimized attention network An AMC-based low-RCS conformal phased array design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1