大型柱形布置的数值模拟

IF 0.9 4区 材料科学 Q3 Materials Science Journal of The South African Institute of Mining and Metallurgy Pub Date : 2023-07-13 DOI:10.17159/2411-9717/2451/2023
J. Napier, D. Malan
{"title":"大型柱形布置的数值模拟","authors":"J. Napier, D. Malan","doi":"10.17159/2411-9717/2451/2023","DOIUrl":null,"url":null,"abstract":"A number of shallow coal or hard rock mines employ pillar mining systems as a strategy for roof failure control. In certain platinum mine layouts, pillars are designed to 'crush' in a stable manner as they become loaded in the panel back area. The correct sizing of pillars demands some knowledge of the pillar strength and the overall layout stress distribution. It is particularly important to understand the impact of the layout geometry on the effective regional 'stiffness' of the rock mass around each pillar. An important design strategy is to model relatively detailed layout configurations which include a precise representation of the local pillar layout geometry and to analyse multiple mining scenarios and extraction sequences to select optimal pillar sizes and barrier pillar spacing. Although computational solution techniques are now impressive in terms of run time efficiency, a major difficulty is often encountered in assigning suitable material properties to the pillars and in devising an effective material description of the layered rock strata overlying the mine excavations. This paper outlines an efficient numerical strategy that can be used to assess large-scale pillar layout performance while retaining the ability to modify individual pillar constitutive behaviour. The proposed method is applied to selected layouts to compare estimated average pillar stress values against values determined by detailed modelling and against observed behaviour.","PeriodicalId":17492,"journal":{"name":"Journal of The South African Institute of Mining and Metallurgy","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical simulation of large-scale pillar-layouts\",\"authors\":\"J. Napier, D. Malan\",\"doi\":\"10.17159/2411-9717/2451/2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A number of shallow coal or hard rock mines employ pillar mining systems as a strategy for roof failure control. In certain platinum mine layouts, pillars are designed to 'crush' in a stable manner as they become loaded in the panel back area. The correct sizing of pillars demands some knowledge of the pillar strength and the overall layout stress distribution. It is particularly important to understand the impact of the layout geometry on the effective regional 'stiffness' of the rock mass around each pillar. An important design strategy is to model relatively detailed layout configurations which include a precise representation of the local pillar layout geometry and to analyse multiple mining scenarios and extraction sequences to select optimal pillar sizes and barrier pillar spacing. Although computational solution techniques are now impressive in terms of run time efficiency, a major difficulty is often encountered in assigning suitable material properties to the pillars and in devising an effective material description of the layered rock strata overlying the mine excavations. This paper outlines an efficient numerical strategy that can be used to assess large-scale pillar layout performance while retaining the ability to modify individual pillar constitutive behaviour. The proposed method is applied to selected layouts to compare estimated average pillar stress values against values determined by detailed modelling and against observed behaviour.\",\"PeriodicalId\":17492,\"journal\":{\"name\":\"Journal of The South African Institute of Mining and Metallurgy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The South African Institute of Mining and Metallurgy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.17159/2411-9717/2451/2023\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The South African Institute of Mining and Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.17159/2411-9717/2451/2023","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

摘要

许多浅煤或硬岩矿山采用矿柱开采系统作为顶板破坏控制策略。在某些铂矿布局中,矿柱被设计成在面板后部加载时以稳定的方式“粉碎”。正确的矿柱尺寸要求对矿柱强度和整体布置应力分布有一定的了解。特别重要的是要了解布局几何对每个矿柱周围岩体的有效区域“刚度”的影响。一个重要的设计策略是建立相对详细的布局配置模型,其中包括对局部矿柱布局几何形状的精确表示,并分析多种采矿场景和提取顺序,以选择最佳矿柱尺寸和屏障矿柱间距。尽管计算解决技术现在在运行时间效率方面令人印象深刻,但在为矿柱分配适当的材料属性以及设计覆盖在矿山挖掘上的层状岩层的有效材料描述方面经常遇到一个主要困难。本文概述了一种有效的数值策略,可用于评估大型支柱布局性能,同时保留修改单个支柱本构行为的能力。所提出的方法应用于选定的布局,将估计的平均支柱应力值与详细建模确定的值和观察到的行为进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical simulation of large-scale pillar-layouts
A number of shallow coal or hard rock mines employ pillar mining systems as a strategy for roof failure control. In certain platinum mine layouts, pillars are designed to 'crush' in a stable manner as they become loaded in the panel back area. The correct sizing of pillars demands some knowledge of the pillar strength and the overall layout stress distribution. It is particularly important to understand the impact of the layout geometry on the effective regional 'stiffness' of the rock mass around each pillar. An important design strategy is to model relatively detailed layout configurations which include a precise representation of the local pillar layout geometry and to analyse multiple mining scenarios and extraction sequences to select optimal pillar sizes and barrier pillar spacing. Although computational solution techniques are now impressive in terms of run time efficiency, a major difficulty is often encountered in assigning suitable material properties to the pillars and in devising an effective material description of the layered rock strata overlying the mine excavations. This paper outlines an efficient numerical strategy that can be used to assess large-scale pillar layout performance while retaining the ability to modify individual pillar constitutive behaviour. The proposed method is applied to selected layouts to compare estimated average pillar stress values against values determined by detailed modelling and against observed behaviour.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
61
审稿时长
4-8 weeks
期刊介绍: The Journal serves as a medium for the publication of high quality scientific papers. This requires that the papers that are submitted for publication are properly and fairly refereed and edited. This process will maintain the high quality of the presentation of the paper and ensure that the technical content is in line with the accepted norms of scientific integrity.
期刊最新文献
A study of different grinding aids for low-energy cement clinker production The needle penetration index for estimating the physico-mechanical properties of pyroclastic rocks Energy efficiency in the South African mining sector: A case study at a coal mine in Mpumalanga Optimization of shape factor by the response surface method, and the effect on sphalerite flotation recovery Mechanical activation and physicochemical factors controlling pyrometallurgical, hydrometallurgical, and electrometallurgical processing of titanium ore: A review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1