{"title":"不等大小样本和的标准差估计","authors":"M. Casquilho, J. Buescu","doi":"10.1515/mcma-2022-2118","DOIUrl":null,"url":null,"abstract":"Abstract In numerous industrial and related activities, the sums of the values of, frequently, unequal size samples are systematically recorded, for several purposes such as legal or quality control reasons. For the typical case where the individual values are not or no longer known, we address the point estimation, with confidence intervals, of the standard deviation (and mean) of the individual items, from those sums alone. The estimation may be useful also to corroborate estimates from previous statistical process control. An everyday case of a sum is the total weight of a set of items, such as a load of bags on a truck, which is used illustratively. For the parameters mean and standard deviation of the distribution, assumed Gaussian, we derive point estimates, which lead to weighted statistics, and we derive confidence intervals. For the latter, starting with a tentative reduction to equal size samples, we arrive at a solid conjecture for the mean, and a proposal for the standard deviation. All results are verifiable by direct computation or by simulation in a general and effective way. These computations can be run on public web pages of ours, namely for possible industrial use.","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":"28 1","pages":"235 - 253"},"PeriodicalIF":0.8000,"publicationDate":"2022-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Standard deviation estimation from sums of unequal size samples\",\"authors\":\"M. Casquilho, J. Buescu\",\"doi\":\"10.1515/mcma-2022-2118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In numerous industrial and related activities, the sums of the values of, frequently, unequal size samples are systematically recorded, for several purposes such as legal or quality control reasons. For the typical case where the individual values are not or no longer known, we address the point estimation, with confidence intervals, of the standard deviation (and mean) of the individual items, from those sums alone. The estimation may be useful also to corroborate estimates from previous statistical process control. An everyday case of a sum is the total weight of a set of items, such as a load of bags on a truck, which is used illustratively. For the parameters mean and standard deviation of the distribution, assumed Gaussian, we derive point estimates, which lead to weighted statistics, and we derive confidence intervals. For the latter, starting with a tentative reduction to equal size samples, we arrive at a solid conjecture for the mean, and a proposal for the standard deviation. All results are verifiable by direct computation or by simulation in a general and effective way. These computations can be run on public web pages of ours, namely for possible industrial use.\",\"PeriodicalId\":46576,\"journal\":{\"name\":\"Monte Carlo Methods and Applications\",\"volume\":\"28 1\",\"pages\":\"235 - 253\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monte Carlo Methods and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/mcma-2022-2118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monte Carlo Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mcma-2022-2118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Standard deviation estimation from sums of unequal size samples
Abstract In numerous industrial and related activities, the sums of the values of, frequently, unequal size samples are systematically recorded, for several purposes such as legal or quality control reasons. For the typical case where the individual values are not or no longer known, we address the point estimation, with confidence intervals, of the standard deviation (and mean) of the individual items, from those sums alone. The estimation may be useful also to corroborate estimates from previous statistical process control. An everyday case of a sum is the total weight of a set of items, such as a load of bags on a truck, which is used illustratively. For the parameters mean and standard deviation of the distribution, assumed Gaussian, we derive point estimates, which lead to weighted statistics, and we derive confidence intervals. For the latter, starting with a tentative reduction to equal size samples, we arrive at a solid conjecture for the mean, and a proposal for the standard deviation. All results are verifiable by direct computation or by simulation in a general and effective way. These computations can be run on public web pages of ours, namely for possible industrial use.