{"title":"将机器学习集成到基于过程的建模中,以改进复杂作物响应的模拟","authors":"I. Droutsas, A. Challinor, Chetan Deva, E. Wang","doi":"10.1093/insilicoplants/diac017","DOIUrl":null,"url":null,"abstract":"\n Machine learning (ML) is the most advanced field of predictive modelling and incorporating it into process-based crop modelling is a highly promising avenue for accurate predictions of plant growth, development and yield. Here, we embed ML algorithms into a process-based crop model. ML is used within GLAM-Parti for daily predictions of radiation use efficiency, the rate of change of harvest index and the days to anthesis and maturity. The GLAM-Parti-ML framework exhibited high skill for wheat growth and development in a wide range of temperature, solar radiation and atmospheric humidity conditions, including various levels of heat stress. The model exhibited less than 20% error in simulating the above-ground biomass, grain yield and the days to anthesis and maturity of three wheat cultivars in six countries (USA, Mexico, Egypt, India, the Sudan and Bangladesh). Moreover, GLAM-Parti reproduced around three quarters of the observed variance in wheat biomass and yield. Existing process-based crop models rely on empirical stress factors to limit growth potential in simulations of crop response to unfavourable environmental conditions. The incorporation of ML into GLAM-Parti eliminated all stress factors under high temperature environments and reduced the physiological model parameters down to four. We conclude that the combination of process-based crop modelling with the predictive capacity of ML makes GLAM-Parti a highly promising framework for the next generation of crop models.","PeriodicalId":36138,"journal":{"name":"in silico Plants","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2022-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Integration of machine learning into process-based modelling to improve simulation of complex crop responses\",\"authors\":\"I. Droutsas, A. Challinor, Chetan Deva, E. Wang\",\"doi\":\"10.1093/insilicoplants/diac017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Machine learning (ML) is the most advanced field of predictive modelling and incorporating it into process-based crop modelling is a highly promising avenue for accurate predictions of plant growth, development and yield. Here, we embed ML algorithms into a process-based crop model. ML is used within GLAM-Parti for daily predictions of radiation use efficiency, the rate of change of harvest index and the days to anthesis and maturity. The GLAM-Parti-ML framework exhibited high skill for wheat growth and development in a wide range of temperature, solar radiation and atmospheric humidity conditions, including various levels of heat stress. The model exhibited less than 20% error in simulating the above-ground biomass, grain yield and the days to anthesis and maturity of three wheat cultivars in six countries (USA, Mexico, Egypt, India, the Sudan and Bangladesh). Moreover, GLAM-Parti reproduced around three quarters of the observed variance in wheat biomass and yield. Existing process-based crop models rely on empirical stress factors to limit growth potential in simulations of crop response to unfavourable environmental conditions. The incorporation of ML into GLAM-Parti eliminated all stress factors under high temperature environments and reduced the physiological model parameters down to four. We conclude that the combination of process-based crop modelling with the predictive capacity of ML makes GLAM-Parti a highly promising framework for the next generation of crop models.\",\"PeriodicalId\":36138,\"journal\":{\"name\":\"in silico Plants\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2022-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"in silico Plants\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/insilicoplants/diac017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"in silico Plants","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/insilicoplants/diac017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Integration of machine learning into process-based modelling to improve simulation of complex crop responses
Machine learning (ML) is the most advanced field of predictive modelling and incorporating it into process-based crop modelling is a highly promising avenue for accurate predictions of plant growth, development and yield. Here, we embed ML algorithms into a process-based crop model. ML is used within GLAM-Parti for daily predictions of radiation use efficiency, the rate of change of harvest index and the days to anthesis and maturity. The GLAM-Parti-ML framework exhibited high skill for wheat growth and development in a wide range of temperature, solar radiation and atmospheric humidity conditions, including various levels of heat stress. The model exhibited less than 20% error in simulating the above-ground biomass, grain yield and the days to anthesis and maturity of three wheat cultivars in six countries (USA, Mexico, Egypt, India, the Sudan and Bangladesh). Moreover, GLAM-Parti reproduced around three quarters of the observed variance in wheat biomass and yield. Existing process-based crop models rely on empirical stress factors to limit growth potential in simulations of crop response to unfavourable environmental conditions. The incorporation of ML into GLAM-Parti eliminated all stress factors under high temperature environments and reduced the physiological model parameters down to four. We conclude that the combination of process-based crop modelling with the predictive capacity of ML makes GLAM-Parti a highly promising framework for the next generation of crop models.