基于Budyko框架的黄河中游主要支流径流变化贡献度和空间差异分解

IF 2.7 4区 环境科学与生态学 Q2 Environmental Science Hydrology Research Pub Date : 2023-03-17 DOI:10.2166/nh.2023.061
Yanyu Dai, Fan Lu, B. Ruan, Xinyi Song, Yu Du, Yiran Xu
{"title":"基于Budyko框架的黄河中游主要支流径流变化贡献度和空间差异分解","authors":"Yanyu Dai, Fan Lu, B. Ruan, Xinyi Song, Yu Du, Yiran Xu","doi":"10.2166/nh.2023.061","DOIUrl":null,"url":null,"abstract":"\n Quantitative differentiation of climate and human activities on runoff is important for water resources management and future water resources trend prediction. In recent years, runoff in the middle reaches of the Yellow River (MRYR) has decreased dramatically. Many studies have analyzed the causes of runoff reduction, but there is still a lack of understanding of the spatial differences in runoff contributions and their causes. Therefore, this study quantitatively distinguishes the contributions of climate and human activities to runoff changes in nine sub-basins of the MRYR based on the Budyko framework and analyses the differences in the contributions of different basins and their causes. The results show that the runoff in the nine sub-basins decreases significantly and the precipitation increases from northwest to southeast. The contribution of human activities to runoff is greater than that of climate change, especially in the Huangfuchuan (HF) River and Kuye (KY) River basins, where the contribution of human activities to runoff exceeds 90%. The greater impact of human activities in HF River and KY River is due to the significantly higher water use growth rate and normalized vegetation index trends than in other areas.","PeriodicalId":55040,"journal":{"name":"Hydrology Research","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decomposition of contribution to runoff changes and spatial differences of major tributaries in the middle reaches of the Yellow River based on the Budyko framework\",\"authors\":\"Yanyu Dai, Fan Lu, B. Ruan, Xinyi Song, Yu Du, Yiran Xu\",\"doi\":\"10.2166/nh.2023.061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Quantitative differentiation of climate and human activities on runoff is important for water resources management and future water resources trend prediction. In recent years, runoff in the middle reaches of the Yellow River (MRYR) has decreased dramatically. Many studies have analyzed the causes of runoff reduction, but there is still a lack of understanding of the spatial differences in runoff contributions and their causes. Therefore, this study quantitatively distinguishes the contributions of climate and human activities to runoff changes in nine sub-basins of the MRYR based on the Budyko framework and analyses the differences in the contributions of different basins and their causes. The results show that the runoff in the nine sub-basins decreases significantly and the precipitation increases from northwest to southeast. The contribution of human activities to runoff is greater than that of climate change, especially in the Huangfuchuan (HF) River and Kuye (KY) River basins, where the contribution of human activities to runoff exceeds 90%. The greater impact of human activities in HF River and KY River is due to the significantly higher water use growth rate and normalized vegetation index trends than in other areas.\",\"PeriodicalId\":55040,\"journal\":{\"name\":\"Hydrology Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrology Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.2166/nh.2023.061\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrology Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/nh.2023.061","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

摘要

气候和人类活动对径流的定量区分对水资源管理和未来水资源趋势预测具有重要意义。近年来,黄河中游地区径流量急剧下降。许多研究分析了径流减少的原因,但对径流贡献的空间差异及其原因仍缺乏了解。因此,本研究基于Budyko框架,定量区分了气候和人类活动对湄公河流域9个子流域径流变化的贡献,并分析了不同流域贡献的差异及其原因。结果表明,9个子流域径流量明显减少,降水量由西北向东南增加。人类活动对径流量的贡献大于气候变化,尤其是皇甫川(HF)河和库耶(KY)河流域,人类活动对径流的贡献超过90%。HF河和KY河人类活动的影响更大,是因为与其他地区相比,用水增长率和归一化植被指数趋势显著更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Decomposition of contribution to runoff changes and spatial differences of major tributaries in the middle reaches of the Yellow River based on the Budyko framework
Quantitative differentiation of climate and human activities on runoff is important for water resources management and future water resources trend prediction. In recent years, runoff in the middle reaches of the Yellow River (MRYR) has decreased dramatically. Many studies have analyzed the causes of runoff reduction, but there is still a lack of understanding of the spatial differences in runoff contributions and their causes. Therefore, this study quantitatively distinguishes the contributions of climate and human activities to runoff changes in nine sub-basins of the MRYR based on the Budyko framework and analyses the differences in the contributions of different basins and their causes. The results show that the runoff in the nine sub-basins decreases significantly and the precipitation increases from northwest to southeast. The contribution of human activities to runoff is greater than that of climate change, especially in the Huangfuchuan (HF) River and Kuye (KY) River basins, where the contribution of human activities to runoff exceeds 90%. The greater impact of human activities in HF River and KY River is due to the significantly higher water use growth rate and normalized vegetation index trends than in other areas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Hydrology Research
Hydrology Research Environmental Science-Water Science and Technology
CiteScore
5.30
自引率
7.40%
发文量
70
审稿时长
17 weeks
期刊介绍: Hydrology Research provides international coverage on all aspects of hydrology in its widest sense, and welcomes the submission of papers from across the subject. While emphasis is placed on studies of the hydrological cycle, the Journal also covers the physics and chemistry of water. Hydrology Research is intended to be a link between basic hydrological research and the practical application of scientific results within the broad field of water management.
期刊最新文献
Prediction of flash flood peak discharge in hilly areas with ungauged basins based on machine learning Effects of tributary inflows on unsteady flow hysteresis and hydrodynamics in the mainstream Drought mitigation operation of water conservancy projects under severe droughts Water quality level estimation using IoT sensors and probabilistic machine learning model Design storm parameterisation for urban drainage studies derived from regional rainfall datasets: A case study in the Spanish Mediterranean region
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1