测量土地形状以作物业估价

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Data Technologies and Applications Pub Date : 2023-08-08 DOI:10.1108/dta-12-2022-0461
Chan-Jae Lee
{"title":"测量土地形状以作物业估价","authors":"Chan-Jae Lee","doi":"10.1108/dta-12-2022-0461","DOIUrl":null,"url":null,"abstract":"PurposeUnstructured data such as images have defied usage in property valuation for a long time. Instead, structured data in tabular format are commonly employed to estimate property prices. This study attempts to quantify the shape of land lots and uses the resultant output as an input variable for subsequent land valuation models.Design/methodology/approachImagery data containing land lot shapes are fed into a convolutional neural network, and the shape of land lots is classified into two categories, regular and irregular-shaped. Then, the intermediate output (regularity score) is utilized in four downstream models to estimate land prices: random forest, gradient boosting, support vector machine and regression models.FindingsQuantification of the land lot shapes and their exploitation in valuation led to an improvement in the predictive accuracy for all subsequent models.Originality/valueThe study findings are expected to promote the adoption of elusive price determinants such as the shape of a land lot, appearance of a house and the landscape of a neighborhood in property appraisal practices.","PeriodicalId":56156,"journal":{"name":"Data Technologies and Applications","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measuring land lot shapes for property valuation\",\"authors\":\"Chan-Jae Lee\",\"doi\":\"10.1108/dta-12-2022-0461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeUnstructured data such as images have defied usage in property valuation for a long time. Instead, structured data in tabular format are commonly employed to estimate property prices. This study attempts to quantify the shape of land lots and uses the resultant output as an input variable for subsequent land valuation models.Design/methodology/approachImagery data containing land lot shapes are fed into a convolutional neural network, and the shape of land lots is classified into two categories, regular and irregular-shaped. Then, the intermediate output (regularity score) is utilized in four downstream models to estimate land prices: random forest, gradient boosting, support vector machine and regression models.FindingsQuantification of the land lot shapes and their exploitation in valuation led to an improvement in the predictive accuracy for all subsequent models.Originality/valueThe study findings are expected to promote the adoption of elusive price determinants such as the shape of a land lot, appearance of a house and the landscape of a neighborhood in property appraisal practices.\",\"PeriodicalId\":56156,\"journal\":{\"name\":\"Data Technologies and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data Technologies and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1108/dta-12-2022-0461\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Technologies and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1108/dta-12-2022-0461","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

目的长期以来,图像等非结构化数据在房地产估价中一直难以使用。相反,通常采用表格形式的结构化数据来估计房地产价格。本研究试图量化地块的形状,并将由此产生的产出作为后续土地估价模型的输入变量。设计/方法/方法包含地块形状的图像数据被输入卷积神经网络,地块形状被分为两类,规则形状和不规则形状。然后,在四个下游模型中使用中间输出(正则性得分)来估计土地价格:随机森林、梯度提升、支持向量机和回归模型。发现在估价中对地块形状及其开发的量化提高了所有后续模型的预测准确性。原创性/价值研究结果有望促进在房地产评估实践中采用难以捉摸的价格决定因素,如地块形状、房屋外观和社区景观。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Measuring land lot shapes for property valuation
PurposeUnstructured data such as images have defied usage in property valuation for a long time. Instead, structured data in tabular format are commonly employed to estimate property prices. This study attempts to quantify the shape of land lots and uses the resultant output as an input variable for subsequent land valuation models.Design/methodology/approachImagery data containing land lot shapes are fed into a convolutional neural network, and the shape of land lots is classified into two categories, regular and irregular-shaped. Then, the intermediate output (regularity score) is utilized in four downstream models to estimate land prices: random forest, gradient boosting, support vector machine and regression models.FindingsQuantification of the land lot shapes and their exploitation in valuation led to an improvement in the predictive accuracy for all subsequent models.Originality/valueThe study findings are expected to promote the adoption of elusive price determinants such as the shape of a land lot, appearance of a house and the landscape of a neighborhood in property appraisal practices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Data Technologies and Applications
Data Technologies and Applications Social Sciences-Library and Information Sciences
CiteScore
3.80
自引率
6.20%
发文量
29
期刊介绍: Previously published as: Program Online from: 2018 Subject Area: Information & Knowledge Management, Library Studies
期刊最新文献
Understanding customer behavior by mapping complaints to personality based on social media textual data A systematic review of the use of FHIR to support clinical research, public health and medical education Novel framework for learning performance prediction using pattern identification and deep learning A comparative analysis of job satisfaction prediction models using machine learning: a mixed-method approach Assessing the alignment of corporate ESG disclosures with the UN sustainable development goals: a BERT-based text analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1