食堂垃圾产生沼气

IF 1.6 4区 工程技术 Q3 Chemical Engineering International Journal of Chemical Reactor Engineering Pub Date : 2023-05-30 DOI:10.1515/ijcre-2022-0238
Hemlata Karne, Hrutuj Raut, Roshan Baviskar, Saket Rokde, Neha Ravnang, Darshan Rathod
{"title":"食堂垃圾产生沼气","authors":"Hemlata Karne, Hrutuj Raut, Roshan Baviskar, Saket Rokde, Neha Ravnang, Darshan Rathod","doi":"10.1515/ijcre-2022-0238","DOIUrl":null,"url":null,"abstract":"Abstract Day by day as the population increases, food waste keeps on growing. This waste needs to be managed in order to reduce the number of landfills and to use food waste efficiently. Among the various processes available, Anaerobic Digestion (AD) of food waste is one of the alternatives for processing food waste. The two biggest obstacles to anaerobic digestion of food waste are high biodegradability and high C/N ratio. The C/N ratio determines the ratio between substrate and nutrients; the latter is essential for microbial synthesis and for providing alkalinity through ammonia metabolism. Biogas, a product of the anaerobic digestion process, is a clean and renewable form of energy that can replace conventional energy sources that cause ecological-environmental problems and at the same time are depleted more quickly. The aim of this work was to increase the nitrogen content to enhance the production of biogas from canteen waste. During the process, two digesters of the same capacity were operated. Anaerobic digestion of canteen waste along with addition of ammonium chloride was carried out in Digester 1 while AD of only canteen waste was carried out in Digester 2. The amount of biogas produced in Digester 1 was in the range of 0.04 m3/kg–0.075 m3/kg, while in Digester 2 the volume range was 0.02 m3/kg–0.04 m3/kg. The average biogas produced in digester 1 consisting of canteen waste and nitrogen source was 0.053 m3/kg while biogas production in digester 2 with only canteen waste was 0.030 m3/kg. So, biogas produced by addition of nitrogen source was 77 % higher than that of only canteen waste. From this study we obtained a higher amount of biogas by addition of ammonium chloride as an external nitrogen source. Nitrogen demand of methanogens was fulfilled by additional supply of nitrogen resulting in increased quantity of biogas. Therefore, in anaerobic digestion addition of ammonium chloride was beneficial for food waste digestion. Hence, nitrogen content in canteen waste turned out to be the main parameter affecting anaerobic digestion of canteen waste which is justified in this research.","PeriodicalId":51069,"journal":{"name":"International Journal of Chemical Reactor Engineering","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biogas production from canteen waste\",\"authors\":\"Hemlata Karne, Hrutuj Raut, Roshan Baviskar, Saket Rokde, Neha Ravnang, Darshan Rathod\",\"doi\":\"10.1515/ijcre-2022-0238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Day by day as the population increases, food waste keeps on growing. This waste needs to be managed in order to reduce the number of landfills and to use food waste efficiently. Among the various processes available, Anaerobic Digestion (AD) of food waste is one of the alternatives for processing food waste. The two biggest obstacles to anaerobic digestion of food waste are high biodegradability and high C/N ratio. The C/N ratio determines the ratio between substrate and nutrients; the latter is essential for microbial synthesis and for providing alkalinity through ammonia metabolism. Biogas, a product of the anaerobic digestion process, is a clean and renewable form of energy that can replace conventional energy sources that cause ecological-environmental problems and at the same time are depleted more quickly. The aim of this work was to increase the nitrogen content to enhance the production of biogas from canteen waste. During the process, two digesters of the same capacity were operated. Anaerobic digestion of canteen waste along with addition of ammonium chloride was carried out in Digester 1 while AD of only canteen waste was carried out in Digester 2. The amount of biogas produced in Digester 1 was in the range of 0.04 m3/kg–0.075 m3/kg, while in Digester 2 the volume range was 0.02 m3/kg–0.04 m3/kg. The average biogas produced in digester 1 consisting of canteen waste and nitrogen source was 0.053 m3/kg while biogas production in digester 2 with only canteen waste was 0.030 m3/kg. So, biogas produced by addition of nitrogen source was 77 % higher than that of only canteen waste. From this study we obtained a higher amount of biogas by addition of ammonium chloride as an external nitrogen source. Nitrogen demand of methanogens was fulfilled by additional supply of nitrogen resulting in increased quantity of biogas. Therefore, in anaerobic digestion addition of ammonium chloride was beneficial for food waste digestion. Hence, nitrogen content in canteen waste turned out to be the main parameter affecting anaerobic digestion of canteen waste which is justified in this research.\",\"PeriodicalId\":51069,\"journal\":{\"name\":\"International Journal of Chemical Reactor Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Chemical Reactor Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/ijcre-2022-0238\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Reactor Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijcre-2022-0238","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

摘要

摘要随着人口的日益增长,食物浪费不断增加。需要对这些垃圾进行管理,以减少垃圾填埋场的数量,并有效利用食物垃圾。在现有的各种工艺中,食物垃圾的厌氧消化(AD)是处理食物垃圾的替代方案之一。食物垃圾厌氧消化的两个最大障碍是高生物降解性和高C/N比。C/N比例决定了基质和营养物质之间的比例;后者对于微生物合成和通过氨代谢提供碱度是必不可少的。沼气是厌氧消化过程的产物,是一种清洁可再生的能源,可以取代造成生态环境问题的传统能源,同时消耗得更快。这项工作的目的是提高氮含量,以提高食堂垃圾产生沼气的能力。在此过程中,运行了两个容量相同的蒸煮器。在1号消化池中进行了食堂垃圾的厌氧消化以及氯化铵的添加,而在2号消化池仅进行了食堂废物的AD。在Digester 1中产生的沼气量在0.04的范围内 m3/kg–0.075 m3/kg,而在Digester 2中,体积范围为0.02 m3/kg–0.04 m3/kg。由食堂垃圾和氮源组成的消化池1中产生的平均沼气为0.053 m3/kg,而只有食堂垃圾的消化池2中的沼气产量为0.030 m3/kg。因此,添加氮源产生的沼气为77 % 高于仅食堂垃圾。通过这项研究,我们通过添加氯化铵作为外部氮源获得了更高量的沼气。产甲烷菌的氮需求通过额外的氮供应来满足,从而增加了沼气的数量。因此,在厌氧消化过程中添加氯化铵有利于食物垃圾的消化。因此,食堂垃圾中的氮含量是影响食堂垃圾厌氧消化的主要参数,这在本研究中是合理的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Biogas production from canteen waste
Abstract Day by day as the population increases, food waste keeps on growing. This waste needs to be managed in order to reduce the number of landfills and to use food waste efficiently. Among the various processes available, Anaerobic Digestion (AD) of food waste is one of the alternatives for processing food waste. The two biggest obstacles to anaerobic digestion of food waste are high biodegradability and high C/N ratio. The C/N ratio determines the ratio between substrate and nutrients; the latter is essential for microbial synthesis and for providing alkalinity through ammonia metabolism. Biogas, a product of the anaerobic digestion process, is a clean and renewable form of energy that can replace conventional energy sources that cause ecological-environmental problems and at the same time are depleted more quickly. The aim of this work was to increase the nitrogen content to enhance the production of biogas from canteen waste. During the process, two digesters of the same capacity were operated. Anaerobic digestion of canteen waste along with addition of ammonium chloride was carried out in Digester 1 while AD of only canteen waste was carried out in Digester 2. The amount of biogas produced in Digester 1 was in the range of 0.04 m3/kg–0.075 m3/kg, while in Digester 2 the volume range was 0.02 m3/kg–0.04 m3/kg. The average biogas produced in digester 1 consisting of canteen waste and nitrogen source was 0.053 m3/kg while biogas production in digester 2 with only canteen waste was 0.030 m3/kg. So, biogas produced by addition of nitrogen source was 77 % higher than that of only canteen waste. From this study we obtained a higher amount of biogas by addition of ammonium chloride as an external nitrogen source. Nitrogen demand of methanogens was fulfilled by additional supply of nitrogen resulting in increased quantity of biogas. Therefore, in anaerobic digestion addition of ammonium chloride was beneficial for food waste digestion. Hence, nitrogen content in canteen waste turned out to be the main parameter affecting anaerobic digestion of canteen waste which is justified in this research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
CiteScore
2.80
自引率
12.50%
发文量
107
审稿时长
3 months
期刊介绍: The International Journal of Chemical Reactor Engineering covers the broad fields of theoretical and applied reactor engineering. The IJCRE covers topics drawn from the substantial areas of overlap between catalysis, reaction and reactor engineering. The journal is presently edited by Hugo de Lasa and Charles Xu, counting with an impressive list of Editorial Board leading specialists in chemical reactor engineering. Authors include notable international professors and R&D industry leaders.
期刊最新文献
VOCs (toluene) removal from iron ore sintering flue gas via LaBO3 (B = Cu, Fe, Cr, Mn, Co) perovskite catalysts: experiment and mechanism Ethyl acetate production by Fischer esterification: use of excess of acetic acid and complete separation sequence Thermodynamic and kinetic study on the catalysis of tributyl aconitate by Amberlyst-15 in a cyclic fixed-bed reactor R dot approach for kinetic modelling of WGS over noble metals Retraction of: Computational fluid dynamic simulations to improve heat transfer in shell tube heat exchangers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1