Wenjie Wang, Jie Wang, Congcong Chen, Yang Luo, Xiaohua Wang, Lingtao Yu
{"title":"基于参数自主选择模型的手术机器人绳驱动微机械臂位置估计器设计","authors":"Wenjie Wang, Jie Wang, Congcong Chen, Yang Luo, Xiaohua Wang, Lingtao Yu","doi":"10.1115/1.4062464","DOIUrl":null,"url":null,"abstract":"\n As the micromanipulator of surgical robots works in a narrow space, it is difficult to install any position sensors at the end, so the position control and position detection cannot be accurately performed. A position estimator based on the parameter autonomous selection model is proposed to estimate the end position indirectly. Firstly, a single joint principle prototype and a position estimator model are established through the 4-Dof driving scheme of the micromanipulator and the cable-driven model. Secondly, the proposed parameter change model is combined with the parameter selection method to form a parameter autonomous selection model. Finally, a position estimator based on the parameter autonomous selection model is established. The experimental results show the maximum estimation error of the position estimator is 0.1928°. Compared with other position estimation methods, the position estimator proposed in this paper has higher accuracy and better robustness, which lays a foundation for the full closed-loop control of micromanipulator position.","PeriodicalId":49155,"journal":{"name":"Journal of Mechanisms and Robotics-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of position estimator for rope driven Micromanipulator of surgical robot based on parameter autonomous selection model\",\"authors\":\"Wenjie Wang, Jie Wang, Congcong Chen, Yang Luo, Xiaohua Wang, Lingtao Yu\",\"doi\":\"10.1115/1.4062464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n As the micromanipulator of surgical robots works in a narrow space, it is difficult to install any position sensors at the end, so the position control and position detection cannot be accurately performed. A position estimator based on the parameter autonomous selection model is proposed to estimate the end position indirectly. Firstly, a single joint principle prototype and a position estimator model are established through the 4-Dof driving scheme of the micromanipulator and the cable-driven model. Secondly, the proposed parameter change model is combined with the parameter selection method to form a parameter autonomous selection model. Finally, a position estimator based on the parameter autonomous selection model is established. The experimental results show the maximum estimation error of the position estimator is 0.1928°. Compared with other position estimation methods, the position estimator proposed in this paper has higher accuracy and better robustness, which lays a foundation for the full closed-loop control of micromanipulator position.\",\"PeriodicalId\":49155,\"journal\":{\"name\":\"Journal of Mechanisms and Robotics-Transactions of the Asme\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanisms and Robotics-Transactions of the Asme\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4062464\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanisms and Robotics-Transactions of the Asme","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1115/1.4062464","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Design of position estimator for rope driven Micromanipulator of surgical robot based on parameter autonomous selection model
As the micromanipulator of surgical robots works in a narrow space, it is difficult to install any position sensors at the end, so the position control and position detection cannot be accurately performed. A position estimator based on the parameter autonomous selection model is proposed to estimate the end position indirectly. Firstly, a single joint principle prototype and a position estimator model are established through the 4-Dof driving scheme of the micromanipulator and the cable-driven model. Secondly, the proposed parameter change model is combined with the parameter selection method to form a parameter autonomous selection model. Finally, a position estimator based on the parameter autonomous selection model is established. The experimental results show the maximum estimation error of the position estimator is 0.1928°. Compared with other position estimation methods, the position estimator proposed in this paper has higher accuracy and better robustness, which lays a foundation for the full closed-loop control of micromanipulator position.
期刊介绍:
Fundamental theory, algorithms, design, manufacture, and experimental validation for mechanisms and robots; Theoretical and applied kinematics; Mechanism synthesis and design; Analysis and design of robot manipulators, hands and legs, soft robotics, compliant mechanisms, origami and folded robots, printed robots, and haptic devices; Novel fabrication; Actuation and control techniques for mechanisms and robotics; Bio-inspired approaches to mechanism and robot design; Mechanics and design of micro- and nano-scale devices.