Andrew Stevens, Libor Kovarik, Patricia Abellan, Xin Yuan, Lawrence Carin, Nigel D. Browning
{"title":"将压缩感知应用于TEM视频:在任何摄像机上大幅提高帧率","authors":"Andrew Stevens, Libor Kovarik, Patricia Abellan, Xin Yuan, Lawrence Carin, Nigel D. Browning","doi":"10.1186/s40679-015-0009-3","DOIUrl":null,"url":null,"abstract":"<p>One of the main limitations of imaging at high spatial and temporal resolution during <i>in-situ</i> transmission electron microscopy (TEM) experiments is the frame rate of the camera being used to image the dynamic process. While the recent development of direct detectors has provided the hardware to achieve frame rates approaching 0.1 ms, the cameras are expensive and must replace existing detectors. In this paper, we examine the use of coded aperture compressive sensing (CS) methods to increase the frame rate of any camera with simple, low-cost hardware modifications. The coded aperture approach allows multiple sub-frames to be coded and integrated into a single camera frame during the acquisition process, and then extracted upon readout using statistical CS inversion. Here we describe the background of CS and statistical methods in depth and simulate the frame rates and efficiencies for <i>in-situ</i> TEM experiments. Depending on the resolution and signal/noise of the image, it should be possible to increase the speed of any camera by more than an order of magnitude using this approach.</p><p>\n\t\t\t\t <b>Mathematics Subject Classification:</b> (2010) 94A08 · 78A15</p>","PeriodicalId":460,"journal":{"name":"Advanced Structural and Chemical Imaging","volume":"1 1","pages":""},"PeriodicalIF":3.5600,"publicationDate":"2015-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40679-015-0009-3","citationCount":"71","resultStr":"{\"title\":\"Applying compressive sensing to TEM video: a substantial frame rate increase on any camera\",\"authors\":\"Andrew Stevens, Libor Kovarik, Patricia Abellan, Xin Yuan, Lawrence Carin, Nigel D. Browning\",\"doi\":\"10.1186/s40679-015-0009-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>One of the main limitations of imaging at high spatial and temporal resolution during <i>in-situ</i> transmission electron microscopy (TEM) experiments is the frame rate of the camera being used to image the dynamic process. While the recent development of direct detectors has provided the hardware to achieve frame rates approaching 0.1 ms, the cameras are expensive and must replace existing detectors. In this paper, we examine the use of coded aperture compressive sensing (CS) methods to increase the frame rate of any camera with simple, low-cost hardware modifications. The coded aperture approach allows multiple sub-frames to be coded and integrated into a single camera frame during the acquisition process, and then extracted upon readout using statistical CS inversion. Here we describe the background of CS and statistical methods in depth and simulate the frame rates and efficiencies for <i>in-situ</i> TEM experiments. Depending on the resolution and signal/noise of the image, it should be possible to increase the speed of any camera by more than an order of magnitude using this approach.</p><p>\\n\\t\\t\\t\\t <b>Mathematics Subject Classification:</b> (2010) 94A08 · 78A15</p>\",\"PeriodicalId\":460,\"journal\":{\"name\":\"Advanced Structural and Chemical Imaging\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5600,\"publicationDate\":\"2015-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s40679-015-0009-3\",\"citationCount\":\"71\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Structural and Chemical Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40679-015-0009-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Structural and Chemical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40679-015-0009-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
Applying compressive sensing to TEM video: a substantial frame rate increase on any camera
One of the main limitations of imaging at high spatial and temporal resolution during in-situ transmission electron microscopy (TEM) experiments is the frame rate of the camera being used to image the dynamic process. While the recent development of direct detectors has provided the hardware to achieve frame rates approaching 0.1 ms, the cameras are expensive and must replace existing detectors. In this paper, we examine the use of coded aperture compressive sensing (CS) methods to increase the frame rate of any camera with simple, low-cost hardware modifications. The coded aperture approach allows multiple sub-frames to be coded and integrated into a single camera frame during the acquisition process, and then extracted upon readout using statistical CS inversion. Here we describe the background of CS and statistical methods in depth and simulate the frame rates and efficiencies for in-situ TEM experiments. Depending on the resolution and signal/noise of the image, it should be possible to increase the speed of any camera by more than an order of magnitude using this approach.